EKF, UKF

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Kalman Filter

- Kalman Filter = special case of a Bayes' filter with dynamics model and sensory model being linear Gaussian:

$$
\begin{aligned}
\end{aligned}
$$

Kalman Filtering Algorithm

- At time 0: $\quad X_{0} \sim \mathcal{N}\left(\mu_{0 \mid 0}, \Sigma_{0 \mid 0}\right)$
- For $\mathrm{t}=\mathrm{I}, 2, \ldots$
- Dynamics update:

$$
\begin{aligned}
\mu_{t+1 \mid 0: t} & =A_{t} \mu_{t \mid 0: t}+B_{t} u_{t} \\
\Sigma_{t+1 \mid 0: t} & =A_{t} \Sigma_{t \mid 0: t} A_{t}^{\top}+Q_{t}
\end{aligned}
$$

- Measurement update:

$$
\begin{aligned}
K_{t+1} & =\Sigma_{t+1 \mid 0: t} C_{t+1}^{\top}\left(C_{t+1} \Sigma_{t+1 \mid 0: t} C_{t+1}^{\top}+R_{t+1}\right)^{-1} \\
\mu_{t+1 \mid 0: t+1} & =\mu_{t+1 \mid 0: t}+K_{t+1}\left(z_{t+1}-\left(C_{t+1} \mu_{t+1 \mid 0: t}+d\right)\right) \\
\Sigma_{t+1 \mid 0: t+1} & =\left(I-K_{t+1} C_{t+1}\right) \Sigma_{t+1 \mid 0: t}
\end{aligned}
$$

Nonlinear Dynamical Systems

- Most realistic robotic problems involve nonlinear functions:

$$
\begin{aligned}
X_{t+1} & =f_{t}\left(X_{t}, u_{t}\right)+\varepsilon_{t} \quad \varepsilon_{t} \sim \mathcal{N}\left(0, Q_{t}\right) \\
Z_{t} & =h_{t}\left(X_{t}\right)+\delta_{t} \quad \delta_{t} \sim \mathcal{N}\left(0, R_{t}\right)
\end{aligned}
$$

- Versus linear setting:

$$
\begin{aligned}
X_{t+1} & =A_{t} X_{t}+B_{t} u_{t}+\varepsilon_{t} \quad \varepsilon_{t} \sim \mathcal{N}\left(0, Q_{t}\right) \\
Z_{t} & =C_{t} X_{t}+d_{t}+\delta_{t} \quad \delta_{t} \sim \mathcal{N}\left(0, R_{t}\right)
\end{aligned}
$$

Linearity Assumption Revisited

Linearity Assumption Revisited

Non-linear Function

"Gaussian of $p(y)$ " has mean and variance of y under $p(y)$

EKF Linearization (1)

EKF Linearization (2)

$\mathrm{p}(\mathrm{x})$ has high variance relative to regiof in which linearization is accurate. ${ }^{9}$

EKF Linearization (3)

$p(x)$ has small variance relative to regio in which linfearization is raccurate. 10^{10}

EKF Linearization: First Order Taylor Series Expansion

- Dynamics model: for X_{t} "close to" μ_{t} we have:

$$
\begin{aligned}
f_{t}\left(x_{t}, u_{t}\right) & \approx f_{t}\left(\mu_{t}, u_{t}\right)+\frac{\partial f_{t}\left(\mu_{t}, u_{t}\right)}{\partial x_{t}}\left(x_{t}-\mu_{t}\right) \\
& =f_{t}\left(\mu_{t}, u_{t}\right)+F_{t}\left(x_{t}-\mu_{t}\right)
\end{aligned}
$$

- Measurement model: for X_{t} "close to" μ_{t} we have:

$$
\begin{aligned}
h_{t}\left(x_{t}\right) & \approx h_{t}\left(\mu_{t}\right)+\frac{\partial h_{t}\left(\mu_{t}\right)}{\partial x_{t}}\left(x_{t}-\mu_{t}\right) \\
& =h_{t}\left(\mu_{t}\right)+H_{t}\left(x_{t}-\mu_{t}\right)
\end{aligned}
$$

EKF Linearization: Numerical

$$
\begin{aligned}
f_{t}\left(x_{t}, u_{t}\right) & \approx f_{t}\left(\mu_{t}, u_{t}\right)+\frac{\partial f_{t}\left(\mu_{t}, u_{t}\right)}{\partial x_{t}}\left(x_{t}-\mu_{t}\right) \\
& =f_{t}\left(\mu_{t}, u_{t}\right)+F_{t}\left(x_{t}-\mu_{t}\right)
\end{aligned}
$$

- Numerically compute F_{t} column by column:

$$
\text { for } i=1, \ldots, n \quad F_{t}(:, i)=\frac{f_{t}\left(\mu_{t}+\varepsilon e_{i}, u_{t}\right)-f_{t}\left(\mu_{t}-\varepsilon e_{i}, u_{t}\right)}{2 \varepsilon}
$$

- Here e_{i} is the basis vector with all entries equal to zero, except for the i't entry, which equals I.
- If wanting to approximate F_{t} as closely as possible then ϵ is chosen to be a small number, but not too small to avoid numerical issues

Ordinary Least Squares

- Given: samples $\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}$

- Problem: find function of the form $f(x)=a_{0}+a_{1} x$ that fits the samples as well as possible in the following sense:

$$
\min _{a_{0}, a_{1}} \frac{1}{2} \sum_{i=1}^{m}\left(a_{0}+a_{1} x^{(i)}-y^{(i)}\right)^{2}
$$

Ordinary Least Squares

\square Recall our objective: $\min _{a_{0}, a_{1}} \frac{1}{2} \sum_{i=1}^{m}\left(a_{0}+a_{1} x^{(i)}-y^{(i)}\right)^{2}$

- Let's write this in vector notation:

$$
\text { - } \bar{x}^{(i)}=\left[\begin{array}{c}
1 \\
x^{(i)}
\end{array}\right] \quad a=\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right] \text { giving: } \quad \min _{a} \frac{1}{2} \sum_{i=1}^{m}\left(\bar{x}^{(i) \top} a-y^{(i)}\right)^{2}
$$

- Set gradient equal to zero to find extremum:

$$
\begin{array}{rlrl}
0=\nabla_{a}(\ldots) & =\sum_{i=1}^{m} \bar{x}^{(i)}\left(\bar{x}^{(i) \top} a-y^{(i)}\right) & \\
& =\left(\sum_{i=1}^{m} \bar{x}^{(i)} \bar{x}^{(i) \top}\right) a-\sum_{i=1}^{m} \bar{x}^{(i)} y^{(i)} & & \\
& =\bar{X} \bar{X}^{\top} a-\bar{X} y & \bar{X}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x^{(1)} & x^{(2)} & \cdots & x^{(m)}
\end{array}\right] \\
a & =\left(\bar{X}^{\top} \bar{X}^{\top}\right)^{-1} \bar{X} y & y^{\top}=\left[\begin{array}{llll}
y^{(1)} & y^{(2)} & \cdots & y^{(m)}
\end{array}\right]
\end{array}
$$

Ordinary Least Squares

- For our example problem we obtain a = [4.75; 2.00]

Ordinary Least Squares

- More generally: $\quad x^{(i)} \in \mathbb{R}^{n}$

$$
\min _{a_{0}, a_{1}, a_{2}, \ldots, a_{n}} \frac{1}{2} \sum_{i=1}^{m}\left(a_{0}+a_{1} x_{1}^{(i)}+a_{2} x_{2}^{(i)}+\ldots+a_{n} x_{n}^{(i)}-y^{(i)}\right)^{2}
$$

- In vector notation:

$$
\text { - } \bar{x}^{(i)}=\left[\begin{array}{c}
1 \\
x^{(i)}
\end{array}\right], a=\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right] \text { gives: } \min _{a} \frac{1}{2} \sum_{i=1}^{m}\left(\bar{x}^{(i) \top} a-y^{(i)}\right)^{2}
$$

- Set gradient equal to zero to find extremum (exact same derivation as two slides back):

$$
a=\left(\bar{X} \bar{X}^{\top}\right)^{-1} \bar{X} y
$$

$$
\begin{aligned}
\bar{X} & =\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x^{(1)} & x^{(2)} & \cdots & x^{(m)}
\end{array}\right] \\
y^{\top} & =\left[\begin{array}{cccc}
y^{(1)} & y^{(2)} & \cdots & y^{(m)}
\end{array}\right]
\end{aligned}
$$

Vector Valued Ordinary Least Squares Problems

- So far have considered approximating a scalar valued function from samples $\left\{\left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}\right),\left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)}\right), \ldots,\left(\mathbf{x}^{(\mathrm{m})}, \mathbf{y}^{(\mathrm{m})}\right)\right\}$ with $x^{(i)} \in \mathbb{R}^{n}, y^{(i)} \in \mathbb{R}$
- A vector valued function is just many scalar valued functions and we can approximate it the same way by solving an OLS problem multiple times. Concretely, let $y^{(i)} \in \mathbb{R}^{p}$ then we have:

Find $a_{0} \in \mathbb{R}^{p}, A \in \mathbb{R}^{n \times p}$, such that $\forall i=1, \ldots, m \quad a_{0}+A x^{(i)} \approx y^{(i)}$.

- In our vector notation:

$$
\begin{aligned}
& \bar{x}^{(i) \top}=\left[\begin{array}{ll}
1 & x^{(i) \top}
\end{array}\right], \bar{A}=\left[\begin{array}{ll}
a_{0} & A
\end{array}\right] \\
& \text { Find } \bar{A} \text { such that } \forall i=1, \ldots, m \text { } \bar{A} \bar{x}^{(i)} \approx y^{(i)} .
\end{aligned}
$$

- This can be solved by solving a separate ordinary least squares problem to find each row of \bar{A}

Vector Valued Ordinary Least Squares Problems

- Solving the OLS problem for each row gives us:

$$
\begin{gathered}
\left(\bar{A}_{j,:}\right)^{\top}=\left(\bar{X} \bar{X}^{\top}\right)^{-1} \bar{X} y_{j}^{(0, \ldots, m)} \\
y_{j}^{(0, \ldots, m)}=\left[\begin{array}{llll}
y_{j}^{(0)} & y_{j}^{(1)} & \cdots & y_{j}^{(m)}
\end{array}\right]^{\top}
\end{gathered}
$$

- Each OLS problem has the same structure. We have

$$
\begin{aligned}
\bar{A}^{\top} & =\left(\bar{X} \bar{X}^{\top}\right)^{-1} \bar{X} Y \\
Y & =\left[\begin{array}{llll}
y_{1}^{(0, \ldots, m)} & y_{2}^{(0, \ldots, m)} & \ldots & y_{p}^{(0, \ldots, m)}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
y_{1}^{(0)} & y_{2}^{(0)} & \ldots & y_{p}^{(0)} \\
y_{1}^{(1)} & y_{2}^{(1)} & \cdots & y_{p}^{(1)} \\
y_{1}^{(m)} & y_{2}^{(m)} & \cdots & y_{p}^{(m)}
\end{array}\right]
\end{aligned}
$$

Vector Valued Ordinary Least Squares and EKF Linearization

- Approximate $\mathrm{x}_{\mathrm{t}+1}=\mathrm{f}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}, \mathrm{u}_{\mathrm{t}}\right)$ with affine function $a_{0}+F_{t} x_{t}$ by running least squares on samples from the function:

$$
\begin{gathered}
\left\{\left(x_{t}^{(1),}, y^{(1)=f_{t}\left(x_{t}(1), u_{t}\right),\left(x_{t}^{(2)}, y^{(2)}=f_{t}\left(x_{t}(2), u_{t}\right), \ldots,\left(x_{t}^{(m)}, y^{(m)}=f_{t}\left(x_{t}(m), u_{t}\right)\right\}\right.}\right.\right. \\
{\left[\begin{array}{ll}
a_{0} & F_{t}
\end{array}\right]^{\top}=\bar{A}^{\top}=\left(\bar{X} \bar{X}^{\top}\right)^{-1} \bar{X} Y}
\end{gathered}
$$

- Similarly for $\mathrm{z}_{\mathrm{t}+\mathrm{l}}=\mathrm{h}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right)$

OLS and EKF Linearization: Sample Point Selection

- OLS vs. traditional (tangent) linearization:

OLS Linearization: choosing samples points

- Perhaps most natural choice:
- $\mu_{t}, \mu_{t}+\Sigma_{t}^{1 / 2}, \mu_{t}-\Sigma_{t}^{1 / 2}$

- reasonable way of trying to cover the region with reasonably high probability mass

Analytical vs. Numerical Linearization

- Numerical (based on least squares or finite differences) could give a more accurate "regional" approximation. Size of region determined by evaluation points.
- Computational efficiency:
- Analytical derivatives can be cheaper or more expensive than function evaluations
- Development hint:
- Numerical derivatives tend to be easier to implement
- If deciding to use analytical derivatives, implementing finite difference derivative and comparing with analytical results can help debugging the analytical derivatives

EKF Algorithm

- At time 0: $\quad X_{0} \sim \mathcal{N}\left(\mu_{0 \mid 0}, \Sigma_{0 \mid 0}\right)$
- For $\mathrm{t}=\mathrm{I}, 2, \ldots$
- Dynamics update: $\quad f_{t}\left(x_{t}, u_{t}\right) \approx a_{0, t}+F_{t}\left(x_{t}-\mu_{t \mid 0: t}\right)$

$$
\begin{aligned}
\left(a_{0, t}, F_{t}\right) & =\text { linearize }\left(f_{t}, \mu_{t \mid 0: t}, \Sigma_{t \mid 0: t}, u_{t}\right) \\
\mu_{t+1 \mid 0: t} & =a_{0, t} \\
\Sigma_{t+1 \mid 0: t} & =F_{t} \Sigma_{t \mid 0: t} F_{t}^{\top}+Q_{t}
\end{aligned}
$$

- Measurement update: $h_{t+1}\left(x_{t+1}\right) \approx c_{0, t+1}+H_{t+1}\left(x_{t+1}-\mu_{t+1 \mid 0: t}\right)$

$$
\begin{aligned}
\left(c_{0, t+1}, H_{t+1}\right) & =\text { linearize }\left(h_{t+1}, \mu_{t+1 \mid 0: t}, \Sigma_{t+1 \mid 0: t}\right) \\
K_{t+1} & =\Sigma_{t+1 \mid 0: t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t+1 \mid 0: t} H_{t+1}^{\top}+R_{t+1}\right)^{-1} \\
\mu_{t+1 \mid 0: t+1} & =\mu_{t+1 \mid 0: t}+K_{t+1}\left(z_{t+1}-c_{0, t+1}\right) \\
\Sigma_{t+1 \mid 0: t+1} & =\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t+1 \mid 0: t}
\end{aligned}
$$

EKF Summary

- Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n :

$$
O\left(k^{2.376}+n^{2}\right)
$$

- Not optimal!
- Can diverge if nonlinearities are large!
- Works surprisingly well even when all assumptions are violated!

Linearization via Unscented Transform

EKF

UKF

UKF Sigma-Point Estimate (2)

EKF

UKF

UKF Sigma-Point Estimate (3)

EKF
UKF

UKF Sigma-Point Estimate (4)

[Julier and UhImann, 1997] UKF intuition why it can perform better

- Assume we know the distribution over X and it has a mean $\backslash \operatorname{bar}\{x\}$
- $Y=f(X)$

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{f}[\mathbf{x}]=\mathbf{f}[\overline{\mathbf{x}}+\boldsymbol{\delta} \mathbf{x}] \\
\quad=\mathbf{f}[\overline{\mathbf{x}}]+\nabla \mathbf{f} \boldsymbol{\delta} \mathbf{x}+\frac{1}{2} \nabla^{2} \mathbf{f} \boldsymbol{\delta} \mathbf{x}^{2}+\frac{1}{3!} \nabla^{3} \mathbf{f} \boldsymbol{\delta} \mathbf{x}^{3}+\frac{1}{4!} \nabla^{4} \mathbf{f} \delta \mathbf{x}^{4}+\cdots \\
\overline{\mathbf{y}}=\mathbf{f}[\overline{\mathbf{x}}]+\frac{1}{2} \nabla^{2} \mathbf{f} \mathbf{P}_{x x}+\frac{1}{2} \nabla^{4} \mathbf{f} \mathrm{E}\left[\boldsymbol{\delta} \mathbf{x}^{4}\right]+\cdots \\
\mathbf{P}_{y y}=\nabla \mathbf{f} \mathbf{P}_{x x}(\nabla \mathbf{f})^{T}+\frac{1}{2 \times 4!} \nabla^{2} \mathbf{f}\left(\mathrm{E}\left[\boldsymbol{\delta} \mathbf{x}^{4}\right]-\mathrm{E}\left[\delta \mathbf{x}^{2} \mathbf{P}_{y y}\right]-\mathrm{E}\left[\mathbf{P}_{y y} \boldsymbol{\delta} \mathbf{x}^{2}\right]+\mathbf{P}_{y y}^{2}\right)\left(\nabla^{2} \mathbf{f}\right)^{T}+ \\
\\
\\
\frac{1}{3!} \nabla^{3} \mathbf{f} \mathrm{E}\left[\boldsymbol{\delta} \mathbf{x}^{4}\right](\nabla \mathbf{f})^{T}+\cdots .
\end{array} .
\end{aligned}
$$

- EKF approximates f by first order and ignores higher-order terms
- UKF uses f exactly, but approximates $\mathrm{p}(\mathrm{x})$.

Original unscented transform

- Picks a minimal set of sample points that match $I^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ moments of a Gaussian:

$$
\begin{array}{llll}
\mathcal{X}_{0} & =\overline{\mathbf{x}} & W_{0} & =\kappa /(n+\kappa) \\
\mathcal{X}_{i} & =\overline{\mathbf{x}}+\left(\sqrt{(n+\kappa) \mathbf{P}_{x x}}\right)_{i} & W_{i} & =1 / 2(n+\kappa) \\
\mathcal{X}_{i+n} & =\overline{\mathbf{x}}-\left(\sqrt{(n+\kappa) \mathbf{P}_{x x}}\right)_{i} & W_{i+n} & =1 / 2(n+\kappa)
\end{array}
$$

- $\operatorname{Vbar}\{x\}=$ mean, $P_{x x}=$ covariance, $i \rightarrow$ i'th column, $x \in \Re^{n}$
- κ : extra degree of freedom to fine-tune the higher order moments of the approximation; when x is Gaussian, $\mathrm{n}+\kappa=3$ is a suggested heuristic
- $L=\backslash$ sqrt $\left\{P _\{x x\}\right\}$ can be chosen to be any matrix satisfying:
- $L L^{\top}=P_{x x}$
[Julier and UhImann, 1997]

Unscented Kalman filter

- Dynamics update:
- Can simply use unscented transform and estimate the mean and variance at the next time from the sample points
- Observation update:
- Use sigma-points from unscented transform to compute the covariance matrix between X_{t} and z_{t}. Then can do the standard update.

Algorithm Unscented_Kalman_filter $\left(\mu_{t-1}, \Sigma_{t-1}, u_{t}, z_{t}\right)$:

1. $\mathcal{X}_{t-1}=\left(\begin{array}{lll}\mu_{t-1} & \mu_{t-1}+\gamma \sqrt{\Sigma_{t-1}} & \mu_{t-1}-\gamma \sqrt{\Sigma_{t-1}}\end{array}\right)$
2. $\overline{\mathcal{X}}_{t}^{*}=g\left(\mu_{t}, \mathcal{X}_{t-1}\right)$
3. $\bar{\mu}_{t}=\sum_{i=0}^{2 n} w_{m}^{[i]} \overline{\mathcal{X}}_{t}^{*[i]}$
4. $\bar{\Sigma}_{t}=\sum_{i=0}^{2 n} w_{c}^{[i]}\left(\overline{\mathcal{X}}_{t}^{*[i]}-\bar{\mu}_{t}\right)\left(\overline{\mathcal{X}}_{t}^{*[i]}-\bar{\mu}_{t}\right)^{\top}+R_{t}$
5. $\overline{\mathcal{X}}_{t}=\left(\begin{array}{lll}\bar{\mu}_{t} & \bar{\mu}_{t}+\gamma \sqrt{\Sigma_{t}} & \bar{\mu}_{t}-\gamma \sqrt{\Sigma_{t}}\end{array}\right)$
6. $\overline{\mathcal{Z}}_{t}=h\left(\overline{\mathcal{X}}_{t}\right)$
7. $\hat{z}_{t}=\sum_{i=0}^{2 n} w_{m}^{[i]} \overline{\mathcal{Z}}_{t}^{[i]}$
8. $S_{t}=\sum_{i=0}^{2 n} w_{c}^{[i]}\left(\overline{\mathcal{Z}}_{t}^{[i]}-\hat{z}_{t}\right)\left(\overline{\mathcal{Z}}_{t}^{[i]}-\hat{z}_{t}\right)^{\top}+Q_{t}$
9. $\bar{\Sigma}_{t}^{x, z}=\sum_{i=0}^{2 n} w_{c}^{[i]}\left(\overline{\mathcal{X}}_{t}^{[i]}-\bar{\mu}_{t}\right)\left(\tilde{\mathcal{Z}}_{t}^{[i]}-\hat{z}_{t}\right)^{\top}$
10. $K_{t}=\bar{\Sigma}_{t}^{x, z} S_{t}^{-1}$
11. $\mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-\hat{z}_{t}\right)$
12. $\Sigma_{t}=\bar{\Sigma}_{t}-K_{t} S_{t} K_{t}^{\top}$
13. return μ_{t}, Σ_{t}

Here $L=\sqrt{\Sigma}$ can be chosen to be any $n \times n$ matrix satisfying: $L L^{\top}=\Sigma$
Technically this is an abuse of notation for the symbol $\sqrt{ }$.
[Table 3.4 in Probabilistic Robotics]

UKF Summary

- Highly efficient: Same complexity as EKF, with a constant factor slower in typical practical applications
- Better linearization than EKF: Accurate in first two terms of Taylor expansion (EKF only first term) + capturing more aspects of the higher order terms
- Derivative-free: No Jacobians needed
- Still not optimal!

