EKF, UKF

Pieter Abbeel UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Kalman Filter

 Kalman Filter = special case of a Bayes' filter with dynamics model and sensory model being linear Gaussian:

$$X_{t+1} = A_t X_t + B_t u_t + \varepsilon_t \quad \varepsilon_t \sim \mathcal{N}(0, Q_t)$$

$$Z_t = C_t X_t + d_t + \delta_t \quad \delta_t \sim \mathcal{N}(0, R_t)$$

Kalman Filtering Algorithm

- At time 0: $X_0 \sim \mathcal{N}(\mu_{0|0}, \Sigma_{0|0})$
- For t = 1, 2, ...
 - Dynamics update:

$$\mu_{t+1|0:t} = A_t \mu_{t|0:t} + B_t u_t$$

$$\Sigma_{t+1|0:t} = A_t \Sigma_{t|0:t} A_t^{\top} + Q_t$$

Measurement update:

$$K_{t+1} = \Sigma_{t+1|0:t} C_{t+1}^{\top} (C_{t+1} \Sigma_{t+1|0:t} C_{t+1}^{\top} + R_{t+1})^{-1}$$

$$\mu_{t+1|0:t+1} = \mu_{t+1|0:t} + K_{t+1} (z_{t+1} - (C_{t+1} \mu_{t+1|0:t} + d))$$

$$\Sigma_{t+1|0:t+1} = (I - K_{t+1} C_{t+1}) \Sigma_{t+1|0:t}$$

Nonlinear Dynamical Systems

Most realistic robotic problems involve nonlinear functions:

$$X_{t+1} = f_t(X_t, u_t) + \varepsilon_t \quad \varepsilon_t \sim \mathcal{N}(0, Q_t)$$

$$Z_t = h_t(X_t) + \delta_t \quad \delta_t \sim \mathcal{N}(0, R_t)$$

Versus linear setting:

$$X_{t+1} = A_t X_t + B_t u_t + \varepsilon_t \quad \varepsilon_t \sim \mathcal{N}(0, Q_t)$$

$$Z_t = C_t X_t + d_t + \delta_t \quad \delta_t \sim \mathcal{N}(0, R_t)$$

Linearity Assumption Revisited

Linearity Assumption Revisited

6

EKF Linearization (1)

8

EKF Linearization (2)

EKF Linearization (3)

EKF Linearization: First Order Taylor Series Expansion

Dynamics model: for X_t "close to" μ_t we have:

$$f_t(x_t, u_t) \approx f_t(\mu_t, u_t) + \frac{\partial f_t(\mu_t, u_t)}{\partial x_t} (x_t - \mu_t)$$
$$= f_t(\mu_t, u_t) + F_t(x_t - \mu_t)$$

• Measurement model: for X_t "close to" μ_t we have:

$$h_t(x_t) \approx h_t(\mu_t) + \frac{\partial h_t(\mu_t)}{\partial x_t}(x_t - \mu_t)$$
$$= h_t(\mu_t) + H_t(x_t - \mu_t)$$

EKF Linearization: Numerical

$$f_t(x_t, u_t) \approx f_t(\mu_t, u_t) + \frac{\partial f_t(\mu_t, u_t)}{\partial x_t} (x_t - \mu_t)$$
$$= f_t(\mu_t, u_t) + F_t(x_t - \mu_t)$$

Numerically compute F_t column by column:

for
$$i = 1, \dots, n$$
 $F_t(:, i) = \frac{f_t(\mu_t + \varepsilon e_i, u_t) - f_t(\mu_t - \varepsilon e_i, u_t)}{2\varepsilon}$

- Here *e_i* is the basis vector with all entries equal to zero, except for the i't entry, which equals 1.
- If wanting to approximate F_t as closely as possible then ϵ is chosen to be a small number, but not too small to avoid numerical issues

Given: samples { $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})$ }

Problem: find function of the form f(x) = a₀ + a₁ x that fits the samples as well as possible in the following sense:

$$\min_{a_0, a_1} \frac{1}{2} \sum_{i=1}^m (a_0 + a_1 x^{(i)} - y^{(i)})^2$$

• Recall our objective:
$$\min_{a_0,a_1} \frac{1}{2} \sum_{i=1}^m (a_0 + a_1 x^{(i)} - y^{(i)})^2$$

Let's write this in vector notation:

•
$$\bar{x}^{(i)} = \begin{bmatrix} 1\\x^{(i)} \end{bmatrix}$$
 $a = \begin{bmatrix} a_0\\a_1 \end{bmatrix}$ giving: $\min_a \frac{1}{2} \sum_{i=1}^m (\bar{x}^{(i)\top}a - y^{(i)})^2$

Set gradient equal to zero to find extremum:

$$0 = \nabla_{a}(\dots) = \sum_{i=1}^{m} \bar{x}^{(i)}(\bar{x}^{(i)\top}a - y^{(i)})$$

$$= \left(\sum_{i=1}^{m} \bar{x}^{(i)}\bar{x}^{(i)\top}\right)a - \sum_{i=1}^{m} \bar{x}^{(i)}y^{(i)}$$

$$= \bar{X}\bar{X}^{\top}a - \bar{X}y \qquad \bar{X} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x^{(1)} & x^{(2)} & \cdots & x^{(m)} \end{bmatrix}$$

$$\overline{a = (\bar{X}\bar{X}^{\top})^{-1}\bar{X}y} \qquad y^{\top} = \begin{bmatrix} y^{(1)} & y^{(2)} & \cdots & y^{(m)} \end{bmatrix}$$

(See the Matrix Cookbook for matrix identities, including derivatives.)

m

For our example problem we obtain a = [4.75; 2.00]

• More generally: $x^{(i)} \in \mathbb{R}^n$

$$\min_{a_0, a_1, a_2, \dots, a_n} \frac{1}{2} \sum_{i=1}^m (a_0 + a_1 x_1^{(i)} + a_2 x_2^{(i)} + \dots + a_n x_n^{(i)} - y^{(i)})^2$$

In vector notation:

•
$$\bar{x}^{(i)} = \begin{bmatrix} 1\\x^{(i)} \end{bmatrix}$$
, $a = \begin{bmatrix} a_0\\a_1 \end{bmatrix}$ gives: $\min_a \frac{1}{2} \sum_{i=1}^m (\bar{x}^{(i)\top}a - y^{(i)})^2$

Set gradient equal to zero to find extremum (exact same derivation as two slides back):

$$a = (\bar{X}\bar{X}^{\top})^{-1}\bar{X}y$$

$$\bar{X} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x^{(1)} & x^{(2)} & \cdots & x^{(m)} \end{bmatrix}$$
$$y^{\top} = \begin{bmatrix} y^{(1)} & y^{(2)} & \cdots & y^{(m)} \end{bmatrix}$$

 \mathbf{m}

Vector Valued Ordinary Least Squares Problems

- So far have considered approximating a scalar valued function from samples {($x^{(1)}, y^{(1)}$), ($x^{(2)}, y^{(2)}$), ..., ($x^{(m)}, y^{(m)}$)} with $x^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R}$
- A vector valued function is just many scalar valued functions and we can approximate it the same way by solving an OLS problem multiple times. Concretely, let $y^{(i)} \in \mathbb{R}^p$ then we have:

Find $a_0 \in \mathbb{R}^p, A \in \mathbb{R}^{n \times p}$, such that $\forall i = 1, \dots, m \ a_0 + Ax^{(i)} \approx y^{(i)}$.

In our vector notation:

$$\bar{x}^{(i)\top} = \begin{bmatrix} 1 & x^{(i)\top} \end{bmatrix}, \ \bar{A} = \begin{bmatrix} a_0 & A \end{bmatrix},$$

Find \bar{A} such that $\forall i = 1, \dots, m \quad \bar{A}\bar{x}^{(i)} \approx y^{(i)}.$

This can be solved by solving a separate ordinary least squares problem to find each row of \bar{A}

Vector Valued Ordinary Least Squares Problems

 $y^{(i)} \in \mathbb{R}^p$

Solving the OLS problem for each row gives us:

$$(\bar{A}_{j,:})^{\top} = (\bar{X}\bar{X}^{\top})^{-1}\bar{X}y_j^{(0,\dots,m)}$$

$$y_j^{(0,...,m)} = \begin{bmatrix} y_j^{(0)} & y_j^{(1)} & \cdots & y_j^{(m)} \end{bmatrix}^\top$$

Each OLS problem has the same structure. We have

$$\bar{A}^{\top} = (\bar{X}\bar{X}^{\top})^{-1}\bar{X}Y$$

$$Y = \begin{bmatrix} y_1^{(0,\dots,m)} & y_2^{(0,\dots,m)} & \cdots & y_p^{(0,\dots,m)} \end{bmatrix}$$

$$= \begin{bmatrix} y_1^{(0)} & y_2^{(0)} & \cdots & y_p^{(0)} \\ y_1^{(1)} & y_2^{(1)} & \cdots & y_p^{(1)} \\ \vdots & \vdots & \vdots \\ y_1^{(m)} & y_2^{(m)} & \cdots & y_p^{(m)} \end{bmatrix}$$

Vector Valued Ordinary Least Squares and EKF Linearization

• Approximate $X_{t+1} = f_t(X_t, U_t)$

with affine function $a_0 + F_t x_t$

by running least squares on samples from the function:

 $\{(x_t^{(1)}, y^{(1)}=f_t(x_t^{(1)}, u_t), (x_t^{(2)}, y^{(2)}=f_t(x_t^{(2)}, u_t), \dots, (x_t^{(m)}, y^{(m)}=f_t(x_t^{(m)}, u_t)\}$

$$\begin{bmatrix} a_0 & F_t \end{bmatrix}^\top = \bar{A}^\top = (\bar{X}\bar{X}^\top)^{-1}\bar{X}Y$$

• Similarly for $Z_{t+1} = h_t(X_t)$

OLS and EKF Linearization: Sample Point Selection

• OLS vs. traditional (tangent) linearization:

OLS Linearization: choosing samples points

Perhaps most natural choice:

•
$$\mu_t, \mu_t + \Sigma_t^{1/2}, \mu_t - \Sigma_t^{1/2}$$

 reasonable way of trying to cover the region with reasonably high probability mass

Analytical vs. Numerical Linearization

- Numerical (based on least squares or finite differences) could give a more accurate "regional" approximation. Size of region determined by evaluation points.
- Computational efficiency:
 - Analytical derivatives can be cheaper or more expensive than function evaluations
- Development hint:
 - Numerical derivatives tend to be easier to implement
 - If deciding to use analytical derivatives, implementing finite difference derivative and comparing with analytical results can help debugging the analytical derivatives

EKF Algorithm

- At time 0: $X_0 \sim \mathcal{N}(\mu_{0|0}, \Sigma_{0|0})$
- For t = 1, 2, ...

• Dynamics update: $f_t(x_t, u_t) \approx a_{0,t} + F_t(x_t - \mu_{t|0:t})$ $(a_{0,t}, F_t) = \text{linearize}(f_t, \mu_{t|0:t}, \Sigma_{t|0:t}, u_t)$ $\mu_{t+1|0:t} = a_{0,t}$ $\Sigma_{t+1|0:t} = F_t \Sigma_{t|0:t} F_t^\top + Q_t$ • Measurement update: $h_{t+1}(x_{t+1}) \approx c_{0,t+1} + H_{t+1}(x_{t+1} - \mu_{t+1|0:t})$ $(c_{0,t+1}, H_{t+1}) = \text{linearize}(h_{t+1}, \mu_{t+1|0:t}, \Sigma_{t+1|0:t})$ $K_{t+1} = \Sigma_{t+1|0:t} H_{t+1}^{\top} (H_{t+1} \Sigma_{t+1|0:t} H_{t+1}^{\top} + R_{t+1})^{-1}$ $\mu_{t+1|0:t+1} = \mu_{t+1|0:t} + K_{t+1}(z_{t+1} - c_{0,t+1})$ $\Sigma_{t+1|0:t+1} = (I - K_{t+1}H_{t+1})\Sigma_{t+1|0:t}$

EKF Summary

 Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: O(k^{2.376} + n²)

- Not optimal!
- Can diverge if nonlinearities are large!
- Works surprisingly well even when all assumptions are violated!

Linearization via Unscented Transform

UKF Sigma-Point Estimate (2)

UKF Sigma-Point Estimate (3)

UKF Sigma-Point Estimate (4)

[Julier and Uhlmann, 1997] UKF intuition why it can perform better

- Assume we know the distribution over X and it has a mean \bar{x}
- Y = f(X)

$$\mathbf{f} [\mathbf{x}] = \mathbf{f} [\bar{\mathbf{x}} + \delta \mathbf{x}]$$

= $\mathbf{f} [\bar{\mathbf{x}}] + \nabla \mathbf{f} \delta \mathbf{x} + \frac{1}{2} \nabla^2 \mathbf{f} \delta \mathbf{x}^2 + \frac{1}{3!} \nabla^3 \mathbf{f} \delta \mathbf{x}^3 + \frac{1}{4!} \nabla^4 \mathbf{f} \delta \mathbf{x}^4 + \cdots$
 $\bar{\mathbf{y}} = \mathbf{f} [\bar{\mathbf{x}}] + \frac{1}{2} \nabla^2 \mathbf{f} \mathbf{P}_{xx} + \frac{1}{2} \nabla^4 \mathbf{f} \mathbf{E} [\delta \mathbf{x}^4] + \cdots$
 $\mathbf{P}_{yy} = \nabla \mathbf{f} \mathbf{P}_{xx} (\nabla \mathbf{f})^T + \frac{1}{2 \times 4!} \nabla^2 \mathbf{f} \left(\mathbf{E} [\delta \mathbf{x}^4] - \mathbf{E} [\delta \mathbf{x}^2 \mathbf{P}_{yy}] - \mathbf{E} [\mathbf{P}_{yy} \delta \mathbf{x}^2] + \mathbf{P}_{yy}^2 \right) (\nabla^2 \mathbf{f})^T + \frac{1}{3!} \nabla^3 \mathbf{f} \mathbf{E} [\delta \mathbf{x}^4] (\nabla \mathbf{f})^T + \cdots$

- EKF approximates f by first order and ignores higher-order terms
- UKF uses f exactly, but approximates p(x).

Original unscented transform

 Picks a minimal set of sample points that match 1st, 2nd and 3rd moments of a Gaussian:

$$\begin{aligned} \boldsymbol{\mathcal{X}}_{0} &= \bar{\mathbf{x}} & W_{0} &= \kappa/(n+\kappa) \\ \boldsymbol{\mathcal{X}}_{i} &= \bar{\mathbf{x}} + \left(\sqrt{(n+\kappa)}\mathbf{P}_{xx}\right)_{i} & W_{i} &= 1/2(n+\kappa) \\ \boldsymbol{\mathcal{X}}_{i+n} &= \bar{\mathbf{x}} - \left(\sqrt{(n+\kappa)}\mathbf{P}_{xx}\right)_{i} & W_{i+n} &= 1/2(n+\kappa) \end{aligned}$$

- \bar{x} = mean, P_{xx} = covariance, i → i'th column, $x \in \Re^n$
- κ : extra degree of freedom to fine-tune the higher order moments of the approximation; when x is Gaussian, $n+\kappa = 3$ is a suggested heuristic
- L = \sqrt{P_{xx}} can be chosen to be any matrix satisfying:

$$L L^{T} = P_{xx}$$

Unscented Kalman filter

- Dynamics update:
 - Can simply use unscented transform and estimate the mean and variance at the next time from the sample points
- Observation update:
 - Use sigma-points from unscented transform to compute the covariance matrix between X_t and Z_t. Then can do the standard update.

Algorithm Unscented_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): **1.** $\mathcal{X}_{t-1} = (\mu_{t-1} \ \mu_{t-1} + \gamma \sqrt{\Sigma_{t-1}} \ \mu_{t-1} - \gamma \sqrt{\Sigma_{t-1}})$ **2.** $\bar{\mathcal{X}}_t^* = g(\mu_t, \mathcal{X}_{t-1})$ **3.** $\bar{\mu}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{X}}_t^{*[i]}$ 4. $\bar{\Sigma}_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t) (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t)^\top + R_t$ **5.** $\bar{\mathcal{X}}_t = \begin{pmatrix} \bar{\mu}_t & \bar{\mu}_t + \gamma \sqrt{\bar{\Sigma}_t} & \bar{\mu}_t - \gamma \sqrt{\bar{\Sigma}_t} \end{pmatrix}$ 6. $\overline{\mathcal{Z}}_t = h(\overline{\mathcal{X}}_t)$ 7. $\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{Z}_t^{[i]}$ 8. $S_t = \sum_{i=0}^{2n} w_c^{[i]} \left(\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t \right) \left(\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t \right)^{\top} + Q_t$ **9.** $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} \left(\bar{\mathcal{X}}_{t}^{[i]} - \bar{\mu}_{t} \right) \left(\tilde{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t} \right)^{\top}$ 10. $K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$ 11. $\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$ 12. $\Sigma_t = \overline{\Sigma}_t - K_t S_t K_t^{\mathsf{T}}$ 13. return μ_t, Σ_t

Here $L = \sqrt{\Sigma}$ can be chosen to be any $n \times n$ matrix satisfying: $LL^{\top} = \Sigma$ Technically this is an abuse of notation for the symbol $\sqrt{-}$. [Table 3.4 in Probabilistic Robotics]

UKF Summary

- Highly efficient: Same complexity as EKF, with a constant factor slower in typical practical applications
- Better linearization than EKF: Accurate in first two terms of Taylor expansion (EKF only first term) + capturing more aspects of the higher order terms
- Derivative-free: No Jacobians needed
- Still not optimal!