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Dynamics of a single rigid body in 3D
2

vrvr ~

(Newton-Euler)



Newtonian mechanics with implicit constraints
3

Newton’s second law for a scalar point mass is

For a set of n point masses in 3D we have

which in vector notation is

Now consider a set of m positional equality constraints defined implicitly as
They could specify that some masses belong to the same rigid body, or that some rigid
bodies are constrained by joints, etc. The constraints eliminate m DOFs and create a
3n-m dimensional configuration manifold parameterized by q.

The constraint forces can only act within the null space,
which is spanned by the rows of the Jacobian matrix               .
Thus for some m-dimensional vector λ,
found by taking into account the differentiated constraints:

The constrained dynamics                  are The constrained dynamics are
the solution to the linear in          equation
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When the system is stationary, the constrained dynamics simplify to
where A is the inverse of the constrained inertia matrix:

There is no acceleration in the null space: , which follows from 

A is singular, with rank(A) = dim(q).

Using the matrix inversion lemma, we can represent A as

Thus the constrained inertia is , and is infinite in the null space.

The same results can be obtained from the more general Gauss principle:
the constrained acceleration      is the solution to the minimization problem

is the unconstrained acceleration; J, b can encode general constraints.  

Constrained inertia and the Gauss principle
4
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The implicitly-constrained dynamics
are expressed in over-complete Cartesian coordinates (x), which is often undesirable.
Instead it is better to express the dynamics in generalized (q) coordinates. This is done
through explicit constraints given by the forward kinematics function  x = h(q)

Differentiating the constraints twice yields

The dynamics are where fc are the constraint forces. 
Since the columns of J span the tangent space to the manifold, 

Assembling these equations, we obtain The constrained dynamics are
a system which is linear in  

Explicit constraints and generalized coordinates
5
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Example: 2-link arm
6
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Consider any set of coordinates x, related to q as x = h(q)

Velocities in the two coordinate systems relate as

Let f and τ denote the same force expressed in x and q coordinates respectively.
Power is coordinate-independent:

Since this holds for any velocity, forces in the two coordinate systems relate as

Let D and M denote the same inertia expressed in x and q coordinates respectively.
Kinetic energy is coordinate-independent:

Since this holds for any velocity, inertias in the two coordinate systems relate as

Coordinate transformations
7
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If we know the dynamics and have full actuation, we can cancel the non-linear parts
and make the system behave as a spring-damper (or anything else):

Actual dynamics:

Desired dynamics:

Control law that
makes actual = desired:

This is an example of feedback linearization.

Operational space control (or end-effector control):

project the inertia, stiffness and damping in the “operational space”,
then design controllers suitable for fully-actuated (point-mass) dynamics.

Using the dynamics for control
8
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Inequality constraints (e.g. contacts) are more complicated:

One could use spring-damper models of contact, but they are hard to tune and can 
be unstable even after tuning, especially with large mass ratios.

Modern solvers define the contact force as the solution to an optimization problem, 
solved iteratively at each time step. This is often the bottleneck of the simulation.

Equality constraints are handled as in the case of point-mass dynamics:
we solve the linear in          equation

Here the constraints are and the Jacobian is

Additional constraints in generalized coordinates
9
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Computing                        and                         directly is inefficient.
Instead one can use faster algorithms exploiting the structure of kinematic trees.
Let si be the 6D motion vector of the (1-dof) joint connecting body i to its parent.

Composite Rigid Body algorithm for computing the inertia matrix M(q)

Recursive Newton-Euler algorithm for computing the inverse dynamics

running this algorithm with             yields

Once M and c are computed, we can compute                              and integrate.

Fast recursive computation of M and c
10
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Dynamics in generalized coordinates
11
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This can be derived from the Euler-Lagrange equation:

symbols lChristoffe

forces ntrolapplied/co

forces nalgravitatio

forces lcentrifuga and Coriolis

matrix inertia





g

c

M

where

     

   

     
 
q

qP
qgqhmqP

qqMqqqK

qPqqKqqL

n nn

T










 ,81.9

2

1
,

,,





   

 
     
































k

ij

i

jk

j

ik
kij

ij jikijk

q

qM

q

qM

q

qM
q

qqqqqc

2

1

,

,

,


where the Lagrangian is the kinetic energy minus the potential energy:

If M does not depend on q, then c=0 and we have Newton’s second law: gqM 



The same dynamics can be obtained from the equivalent Hamiltonian formulation,
based on the Hamiltonian H = K + P instead of the Lagrangian L = K – P.
Now the state is represented in terms of q and the generalized momentum

H and L are related by the Legendre transformation

Kinetic energy in the new coordinates is

Hamilton’s equations are:

The rate of change of the Hamiltonian (i.e. the total energy) equals power:

Hamiltonian formulation
12
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In the absence of external forces, the Hamiltonian is conserved.
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Manifolds and metrics
13

Q is a differentiable manifold and TqQ the tangent space at point q.
T*qQ denotes the co-tangent (or dual) space.

A metric defines a dot-product on the tangent space:

The manifold is Riemannian if M(q) is s.p.d. for all q.

The dot-product on the co-tangent space is defined by the inverse of M:

The metric provides the mapping between the two spaces:

Tangent and co-tangent vectors are multiplied directly: 

Application to multi-joint dynamics:
The configuration space of a multi-joint system is a Riemannian manifold with metric
given by the joint-space inertia matrix M(q). The tangent vectors are velocities    .
The co-tangent vectors are forces f and momenta . 

is kinetic energy;            is power.
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Covariant derivatives and geodesics
14

The tangent basis vectors are associated with partial derivatives:
The co-tangent basis vectors are associated with differential forms: 
If f(q) is scalar and is a tangent vector, then vf is the directional derivative:

A connection specifies how nearby coordinate frames “connect”, i.e. how the basis
vectors change over the manifold. The usual vector directional derivative is replaced
with the covariant derivative, defined in coordinates by the Christoffel symbols 

For general vectors the covariant derivative is

A connection is flat when .  In that case we recover the regular derivative.  

For a Riemannian manifold with metric M(q), there exists a unique metric-preserving
torsion-free connection (the Levi-Civita connection) with Christoffel symbols:

A geodesic is a curve γ(t) such that , i.e. for all k.
This is called the geodesic equation.

k
jik

ij

i

k
i

v evu
q

u
vu 

















0  






























s

ij

i

js

j

is
sijsij

ksk
ij

q

M

q

M

q

M
M

2

1
,,

0 jik
ij

k  

ii qe 

ii dq

k
k
ijje ee

i


i
i

i
i evveuu  ,

 qk
ij

0k
ij

i
ievv 

 fv
q

f
vfevvf T

i

i
i

i grad







The unforced motions of a multi-joint system satisfy

which we can rewrite (using the fact that M is s.p.d.) as

Recalling the expression for c, this can be written in component form as

Unforced motions as geodesics
15
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Thus we have recovered the geodesic equation

The Levi-Civita connection for the Riemannian metric defined by the inertia matrix
is called the mechanical connection. Its geodesics are the unforced motions.

With external forces and gravity, the dynamics become

This is equivalent to Newton’s s second law,
with the covariant derivative in place of the regular derivative:
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