Data Integrity and History

Magdalena Balazinska
joint work with
Gaetano Borriello, Nodira Khoussainova,
YongChul Kwon, Dan Suciu, and Evan Welbourne

University of Washington

August 2006
Two Challenges

● Problem 1
 – Errors are frequent; cannot always be masked
 – Errors affect application logic
 – How should we handle errors?

● Problem 2
 – Two types of data: current and historical
 – Want to enable queries over both types of data
 – Can we complement current info with history?
Example: RFID-Based Tracking

Show my tag reads over time:

Tagged object: all_objects
Start time: 01 Jun, 2006
Stop time: 01 Jul, 2006
Submit Query

Show a person's tag reads over time:

Person: suciu, gaetano, nodira
Start time: 01 Jun, 2006
Stop time: 01 Jul, 2006
Submit Query
Sample Queries

Where is my object:

Where is this object: purse Submit Query

How much time have I spent in the Allen Center:

Start time: 01 Jun, 2006 Stop time: 01 Jul, 2006 Submit Query

Where is this person:

Where is this person: gaetano Submit Query
Sample Useful Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>magda</td>
<td>purse</td>
<td>7</td>
<td>1</td>
<td>Wed Jul 26 09:22:12 2006</td>
</tr>
<tr>
<td>magda</td>
<td>purse</td>
<td>7</td>
<td>1</td>
<td>Wed Jul 26 09:22:13 2006</td>
</tr>
</tbody>
</table>

Magda is in the office ...

<table>
<thead>
<tr>
<th>magda</th>
<th>person_public</th>
<th>7</th>
<th>1</th>
<th>Wed Jul 26 19:28:50 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>magda</td>
<td>purse</td>
<td>7</td>
<td>1</td>
<td>Wed Jul 26 19:28:51 2006</td>
</tr>
<tr>
<td>magda</td>
<td>person_public</td>
<td>7</td>
<td>1</td>
<td>Wed Jul 26 19:28:52 2006</td>
</tr>
</tbody>
</table>

Magda is home ...
Example of Erroneous Input

<table>
<thead>
<tr>
<th>CSE Net ID</th>
<th>Object</th>
<th>Reader Number</th>
<th>Antenna Number</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>magda</td>
<td>person_public</td>
<td>7</td>
<td>1</td>
<td>Thu Jul 27 09:21:51 2006</td>
</tr>
<tr>
<td>magda</td>
<td>person_public</td>
<td>7</td>
<td>2</td>
<td>Thu Jul 27 09:21:52 2006</td>
</tr>
<tr>
<td>magda</td>
<td>person_public</td>
<td>7</td>
<td>2</td>
<td>Thu Jul 27 09:21:52 2006</td>
</tr>
<tr>
<td>magda</td>
<td>person_public</td>
<td>7</td>
<td>2</td>
<td>Thu Jul 27 09:21:53 2006</td>
</tr>
<tr>
<td>magda</td>
<td>person_public</td>
<td>7</td>
<td>1</td>
<td>Thu Jul 27 09:21:54 2006</td>
</tr>
<tr>
<td>magda</td>
<td>laptop_power_cord</td>
<td>7</td>
<td>1</td>
<td>Thu Jul 27 09:21:54 2006</td>
</tr>
<tr>
<td>magda</td>
<td>laptop_power_cord</td>
<td>7</td>
<td>1</td>
<td>Thu Jul 27 09:21:55 2006</td>
</tr>
</tbody>
</table>

What happened to the laptop?
No purse this morning?
Another Example with Error

<table>
<thead>
<tr>
<th>magda</th>
<th>person_public</th>
<th>Z</th>
<th>1</th>
<th>Thu Jul 27 12:44:31 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>magda</td>
<td>person_public</td>
<td>Z</td>
<td>2</td>
<td>Thu Jul 27 12:44:32 2006</td>
</tr>
<tr>
<td>magda</td>
<td>purse</td>
<td>Z</td>
<td>1</td>
<td>Thu Jul 27 12:44:32 2006</td>
</tr>
<tr>
<td>magda</td>
<td>purse</td>
<td>Z</td>
<td>2</td>
<td>Thu Jul 27 12:44:33 2006</td>
</tr>
<tr>
<td>magda</td>
<td>purse</td>
<td>Z</td>
<td>2</td>
<td>Thu Jul 27 13:23:54 2006</td>
</tr>
<tr>
<td>magda</td>
<td>purse</td>
<td>Z</td>
<td>1</td>
<td>Thu Jul 27 13:23:54 2006</td>
</tr>
</tbody>
</table>

The purse came back from lunch by itself...
Problem 1: Data Integrity

- **Data produced by sensors contains errors**
 - Missing input data (missed readings)
 - Erroneous input data (duplicate readings)
 - Sensor or system failures

- **Errors affect applications**
 - Errors compromise data integrity
 - Applications produce wrong results
 - Or they need to include code to handle errors
Error Handling

- Increase fault-tolerance
 - Replicate system components
 - Clean input data at various levels
- BUT
 - Some errors only visible at application level
 - ex: Person returns to office but never left it
 - Cannot always clean the data with certainty
 - ex: Missed purse reading vs forgotten purse
 - On a large scale, impossible to mask all errors
Possible Approach

- Show applications data quality information
- Enable apps to specify integrity constraints
 - Constraints defined over the data
 - Constraints can involve complex temporal events
- Use constraints to
 - Clean the data
 - Take app-defined action upon violation
- Leverage presence of multiple applications
 - Clean data incrementally
Using Constraints to Clean Data

FORALL INPUT1 AS I1, INPUT2 AS I2, ..., WHERE EXPR1

CHECK EXPR2

CONFIDENCE c

- Approach
 - Use constraints to identify missing data and conflicting data; generate missing data
 - Transform constraints into equations
 - Solve using maximum entropy
 - Produces probabilistic input data
Challenges

- **Complexity**
 - Integrity constraints can be complex

- **Efficiency**
 - Need to verify constraints in near-real-time
 - Need to clean data in near-real-time

- **Incremental cleaning, continuous processing**
 - Often can clean older data based on new info
 - How should this affect continuous processing?
Problem 2: Data History

- Two types of sensor data
 - Current (live) data: streams continuously
 - Historical data: stored on disk

- Typically, want to enable
 - Continuous queries over live data
 - Ad-hoc queries over data archives

- BUT
 - How to integrate history into continuous queries?
 - Data archive too large to query in near-real-time
Challenges

- Complement near-real-time data with history
 - “Alert me if there is a parking space available with a low history of theft”
 - “Find K events most similar to the current event”
- Hard problem when
 - Many different types of queries
 - Cannot index all data attributes
- Approach
 - Selectively examine relevant subsets of history
Conclusion

● Many data management problems
● We have emphasized two of them
 – Manage data integrity
 – Exploit data history
● Already challenging at a small scale
● Web-scale makes these problems harder