Parallel Thinking*

Guy Blelloch

*Part of Center for Computational Thinking
Parallel Thinking

How to deal with parallelism/concurrency:

Option I: Minimize what users have to learn about parallelism. Hide parallelism in libraries which are programmed by a few experts.

Option II: Teach parallelism as an advanced subject after and based on standard material on sequential computing.

Option III: Teach parallelism from the start with sequential computing as a special case.
Parallel Thinking

Could it be that it is more natural to think about parallel algorithms than sequential algorithms?

If done right could parallel programming be easier than sequential programming, or at least for most uses?

Are we currently brainwashing students to think sequentially?

What are the core parallel ideas that all CS undergraduates should know?
Quicksort from Sedgewick

public void quickSort(int[] a, int left, int right) {
 int i = left-1; int j = right;
 if (right <= left) return;
 while (true) {
 while (a[++i] < a[right]);
 while (a[right]<a[--j])
 if (j==left) break;
 if (i >= j) break;
 swap(a,i,j); }
 swap(a, i, right);
 quickSort(a, left, i - 1);
 quickSort(a, i+1, right); }
procedure QUICKSORT(S):
 if S contains at most one element then return S
 else
 begin
 choose an element a randomly from S;
 let S_1, S_2 and S_3 be the sequences of elements in S less than, equal to, and greater than a, respectively;
 return (QUICKSORT(S_1) followed by S_2 followed by QUICKSORT(S_3))
 end
procedure QUICKSORT(S):
 if S contains at most one element then return S
else
 begin
 choose an element a randomly from S;
 let \(S_1, S_2 \) and \(S_3 \) be the sequences of
 elements in S less than, equal to, and greater than a, respectively;
 return (QUICKSORT(S_1) followed by S_2
 followed by QUICKSORT(S_3))
 end
Quicksort in NESL

function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
 R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ R[1];
double[] quicksort(double[] S) {
 if (S.length < 2) return S;
 double a = S[rand(S.length)];
 double[] S1, S2, S3;
 finish {
 async { S1 = quicksort(lessThan(S,a));}
 async { S2 = eqTo(S,a);}
 S3 = quicksort(grThan(S,a));
 }
 append(S1,append(S2,S3));
}
Parallel selection

\{ e \in S \mid e < a \};

\begin{align*}
S &= [2, 1, 4, 0, 3, 1, 5, 7] \\
F = S < 4 &= [1, 1, 0, 1, 1, 1, 0, 0] \\
I = \text{addscan}(F) &= [0, 1, 2, 2, 3, 4, 5, 5] \\
\end{align*}

where \ F \\
R[I] &= S = [2, 1, 0, 3, 1]
function plusscan(A, op) =
if (#A <= 1) then [0]
else let
 evens = scan(sums);
 odds = {evens[i] + A[2*i] : i in [0:#a/2]};
in interleave(evens, odds),

A = [2, 1, 4, 2, 3, 1, 5, 7]
sums = [3, 6, 4, 12]
evens = [0, 3, 9, 13] (result of recursion)
odd = [2, 7, 12, 18]
result = [0, 2, 3, 7, 9, 12, 13, 18]
Complexity

Sequential Partition and Append

Span = $O(n)$

Work = $O(n \log n)$
Complexity in Nesl

Combining for parallel map:

\[
p_{\text{exp}} = \{\exp(e) : e \text{ in } A\}
\]

\[
W_{p_{\text{exp}}} (A) = \sum_{i=0}^{n-1} W_{\exp} (A_i)
\]

\[
D_{p_{\text{exp}}} (A) = \max_{i=0}^{n-1} D_{\exp} (A_i)
\]

Can prove runtime bounds for Various models:

\[
T = O(W/P + D \log P)
\]
Parallel Partition and Append

Work = $O(n \log n)$

Span = $O(\lg^2 n)$
Complexity

Parallel Partition and Append

Can add cache performance to the costs

Work = $O(n \log n)$

Span = $O(\lg^2 n)$
Quicksort in Multilisp (futures)

(defun quicksort (L) (qs L nil))

(defun qs (L rest)
 (if (null L) rest
 (let ((a (car L))
 (L1 (filter (lambda (b) (< b a)) (cdr L)))
 (L3 (filter (lambda (b) (>= b a)) (cdr L)))))
 (qs L1 (future (cons a (qs L3 rest)))))))

(defun filter (f L)
 (if (null L) nil
 (if (f (car L))
 (future (cons (car L) (filter f (cdr L)))
 (filter f (cdr L))))))
Quicksort in Multilisp (futures)

Span = $O(n)$

Work = $O(n \log n)$
Example: Graph Connectivity

Edge List Representation:

\[
(0,1), (0,2), (2,3), (3,4), (1,3), \\
(1,0), (2,0), (3,2), (4,3), (3,1)
\]

Randomly flip coins

Every edge link
From black to red

Join
Example: Graph Connectivity

L = Vertex Labels, E = Edge List

function randomMate(L, E) =
if #E = 0 then L
else let
 FL = {randBit(.5) : x in [0:#L]};
 H = {(u,v) in E | FL[u] and not(FL[v])};
 L = L <- H;
 E = {(L[u],L[v]) : (u,v) in E | L[u] \= L[v]};
in randomMate(L,E);

D = O(log n)
W = O(m log n)
Back to Parallel Thinking

What are the core ideas that all undergraduates should know?
Concurrency vs. Parallelism

Some tasks are inherently **concurrent** (an OS, web server, multiuser game, sensor network).

Other tasks only use **parallelism** for efficiency (fft, nbody, frame rendering, shortest-path, mpeg-decode, speech understanding...)

Most applications will consists of both, but they should be separated and for the later we should use **deterministic semantics**.

- Longevity and composability
- Reasoning about correctness
- Debugging
Proposal

Develop a document that outlines what we think all undergraduates should know, and perhaps also what many should know.

- What will still be useful 20 years from now?
- What topics cover multiple areas or applications?