Amdahl’s Law in the Multicore Era

Mark D. Hill and Michael R. Marty

University of Wisconsin—Madison
August 2008 @ Semiahmoo Workshop

IBM’s Dr. Thomas Puzak:
Everyone knows Amdahl’s Law
But quickly forgets it!
Executive Summary

- Develop A Corollary to Amdahl’s Law
 - Simple Model of Multicore Hardware
 - Complements Amdahl’s software model
 - Fixed chip resources for cores
 - Core performance improves sub-linearly with resources

- Research Implications
 1. Need Dramatic Increases in Parallelism (No Surprise)
 a. 99% parallel limits 256 cores to speedup 72
 b. New Moore’s Law: Double Parallelism Every Two Years?
 2. Many larger chips need increased core performance
 3. HW/SW for asymmetric designs (one/few cores enhanced)
 4. HW/SW for dynamic designs (serial \rightarrow parallel)
Outline

• Multicore Motivation & Research Paper Trends
• Recall Amdahl’s Law
• A Model of Multicore Hardware
 • Symmetric Multicore Chips
 • Asymmetric Multicore Chips
 • Dynamic Multicore Chips
• Caveats & Wrap Up
How has Architecture Research Prepared?

8/6/2008

Wisconsin Multifacet Project
How has Architecture Research Prepared?

Will Architecture Research Overreact?

Source: Hill, 2/2008
What About PL/Compilers (PLDI) Research?

Percent Multiprocessor Papers

PLDI Begins

End of Small SMP Bulge?

Lead up to Multicore

Gentle Multicore Ramp

What Next?

Source: Steve Jackson, 3/2008
What About Systems (SOSP/OSDI) Research?

Percent Multiprocessor Papers

What Next?

NO Multicore Ramp (Yet)

Lead up to Multicore

Small SMP Bulge

Source: Michael Swift, 3/2008

SOSP odd years only → ODSI even & SOSP odd
Outline

• Multicore Motivation & Research Paper Trends

• Recall Amdahl’s Law

• A Model of Multicore Hardware

• Symmetric Multicore Chips

• Asymmetric Multicore Chips

• Dynamic Multicore Chips

• Caveats & Wrap Up
Recall Amdahl’s Law

• Begins with Simple Software Assumption (Limit Arg.)
 – Fraction F of execution time perfectly parallelizable
 – No Overhead for
 – Scheduling
 – Communication
 – Synchronization, etc.
 – Fraction $1 - F$ Completely Serial

• Time on 1 core = \(\frac{1 - F}{1} + \frac{F}{1} = 1 \)

• Time on N cores = \(\frac{1 - F}{1} + \frac{F}{N} \)
Recall Amdahl’s Law [1967]

\[
\text{Amdahl’s Speedup} = \frac{1}{1 - F} + \frac{F}{N}
\]

- For mainframes, Amdahl expected $1 - F = 35\%$
 - For a 4-processor speedup = 2
 - For infinite-processor speedup < 3
 - Therefore, stay with mainframes with one/few processors

- Amdahl’s Law applied to Minicomputer to PC Eras
- What about the Multicore Era?
Designing Multicore Chips Hard

• Designers must confront single-core design options
 – Instruction fetch, wakeup, select
 – Execution unit configuration & operand bypass
 – Load/queue(s) & data cache
 – Checkpoint, log, runahead, commit.

• As well as additional design degrees of freedom
 – How many cores? How big each?
 – Shared caches: levels? How many banks?
 – Memory interface: How many banks?
 – On-chip interconnect: bus, switched, ordered?
Want Simple Multicore Hardware Model

To Complement Amdahl’s Simple Software Model

(1) Chip Hardware Roughly Partitioned into
 - Multiple Cores (with L1 caches)
 - The Rest (L2/L3 cache banks, interconnect, pads, etc.)
 - Changing Core Size/Number does NOT change The Rest

(2) Resources for Multiple Cores Bounded
 - Bound of \(N \) resources per chip for cores
 - Due to area, power, cost ($$$), or multiple factors
 - Bound = Power? (but our pictures use Area)
(3) Micro-architects can improve single-core performance using more of the bounded resource

- **A Simple Base Core**
 - Consumes 1 Base Core Equivalent (BCE) resources
 - Provides performance normalized to 1

- **An Enhanced Core (in same process generation)**
 - Consumes R BCEs
 - Performance as a function $\text{Perf}(R)$

- What does function $\text{Perf}(R)$ look like?
More on Enhanced Cores

- (Performance Perf(R) consuming R BCEs resources)
- If Perf(R) > R ➔ Always enhance core
- Cost-effectively speedups both sequential & parallel
- Therefore, Equations Assume Perf(R) < R
 - Graphs Assume Perf(R) = Square Root of R
 - 2x performance for 4 BCEs, 3x for 9 BCEs, etc.
 - Why? Models diminishing returns with “no coefficients”
 - Alpha EV4/5/6 [Kumar 11/2005] & Intel’s Pollack’s Law

- How to speedup enhanced core?
 - <Insert favorite or TBD micro-architectural ideas here>
Outline

• Multicore Motivation & Research Paper Trends
• Recall Amdahl’s Law
• A Model of Multicore Hardware

• **Symmetric Multicore Chips**
• Asymmetric Multicore Chips
• Dynamic Multicore Chips
• Caveats & Wrap Up
How Many (Symmetric) Cores per Chip?

- Each Chip Bounded to N BCEs (for all cores)
- Each Core consumes R BCEs
- Assume Symmetric Multicore = All Cores Identical
- Therefore, N/R Cores per Chip — $(N/R)R = N$
- For an $N = 16$ BCE Chip:
Performance of Symmetric Multicore Chips

• Serial Fraction 1-F uses 1 core at rate Perf(R)
 Serial time = (1 – F) / Perf(R)

• Parallel Fraction uses N/R cores at rate Perf(R) each
 Parallel time = F / (Perf(R) * (N/R)) = F*R / Perf(R)*N

• Therefore, w.r.t. one base core:
 \[
 \text{Symmetric Speedup} = \frac{1}{1 - F \frac{1}{\text{Perf}(R)}} + \frac{F \frac{R}{\text{Perf}(R)*N}}{\text{Enhanced Cores speed Serial & Parallel}}
 \]

• Implications?
Symmetric Multicore Chip, N = 16 BCEs

F=0.5, Opt. Speedup $S = 4 = \frac{1}{0.5/4 + 0.5*16/(4*16)}$

Need to increase parallelism to make multicore optimal!
Symmetric Multicore Chip, N = 16 BCEs

At F=0.9, Multicore optimal, but speedup limited

Need to obtain even more parallelism!
Symmetric Multicore Chip, N = 16 BCEs

F matters: Amdahl’s Law applies to multicore chips
MANY Researchers should target parallelism F first
• **Technologist’s Moore’s Law**
 – Double Transistors per Chip every 2 years
 – Slows or stops: TBD

• **Microarchitect’s Moore’s Law**
 – Double Performance per Core every 2 years
 – Slowed or stopped: Early 2000s

• **Multicore’s Moore’s Law**
 – Double Cores per Chip every 2 years
 – & Double Parallelism per Workload every 2 years
 – & Aided by Architectural Support for Parallelism
 – = Double Performance per Chip every 2 years
 – Starting now

• Software as Producer, not Consumer, of Performance Gains!
As Moore’s Law enables N to go from 16 to 256 BCEs, More cores? Enhance cores? Or both?

Recall $F=0.9$, $R=2$, Cores=8, **Speedup=6.7**
Symmetric Multicore Chip, $N = 256$ BCEs

As Moore’s Law increases N, often need enhanced core designs

Some arch. researchers should target single-core performance

MORE CORES & ENHANCE CORES!

8/6/2008 Wisconsin Multifacet Project
Software for Large Symmetric Multicore Chips

• F matters: Amdahl’s Law applies to multicore chips

 • $N = 256$
 \[- F=0.9 \implies \text{Speedup} = 27 \at R = 28 \]
 \[- F=0.99 \implies \text{Speedup} = 80 \at R = 3 \]
 \[- F=0.999 \implies \text{Speedup} = 204 \at R = 1 \]

 • $N = 1024$
 \[- F=0.9 \implies \text{Speedup} = 53 \at R = 114 \]
 \[- F=0.99 \implies \text{Speedup} = 161 \at R = 10 \]
 \[- F=0.999 \implies \text{Speedup} = 506 \at R = 1 \]

• Researchers must target parallelism F first
Aside: Cost-Effective Parallel Computing

• Isn’t Speedup(C) < C Inefficient? (C = #cores)

• Much of a Computer’s Cost OUTSIDE Processor

• Let Costup(C) = Cost(C)/Cost(1)

• Parallel Computing Cost-Effective:
 Speedup(C) > Costup(C)

• 1995 SGI PowerChallenge w/ 500MB:
 Costup(32) = 8.6

Multicores have even lower Costups!!!
Outline

• Multicore Motivation & Research Paper Trends
• Recall Amdahl’s Law
• A Model of Multicore Hardware
• Symmetric Multicore Chips
 • Asymmetric Multicore Chips
• Dynamic Multicore Chips
• Caveats & Wrap Up
Asymmetric (Heterogeneous) Multicore Chips

• Symmetric Multicore Required All Cores Equal
• Why Not Enhance Some (But Not All) Cores?
 – For Amdahl’s Simple Software Assumptions
 – One Enhanced Core
 – Others are Base Cores
• How?
 – <fill in favorite micro-architecture techniques here>
 – Model ignores design cost of asymmetric design

• How does this effect our hardware model?
How Many Cores per Asymmetric Chip?

- Each Chip Bounded to N BCEs (for all cores)
- One R-BCE Core leaves N-R BCEs
- Use N-R BCEs for N-R Base Cores
- Therefore, 1 + N - R Cores per Chip
- For an N = 16 BCE Chip:

 Symmetric: Four 4-BCE cores
 Asymmetric: One 4-BCE core & Twelve 1-BCE base cores
Performance of Asymmetric Multicore Chips

• Serial Fraction 1-F same, so time = \((1 - F) / \text{Perf}(R)\)

• Parallel Fraction F
 – One core at rate \(\text{Perf}(R)\)
 – \(N-R\) cores at rate 1
 – Parallel time = \(F / (\text{Perf}(R) + N - R)\)

Therefore, w.r.t. one base core:

\[
\text{Asymmetric Speedup} = \frac{1}{1 - \frac{F}{\text{Perf}(R)}} + \frac{F}{\text{Perf}(R) + N - R}
\]
Asymmetric Multicore Chip, N = 256 BCEs

Number of Cores = 1 (Enhanced) + 256 – R (Base)

How do Asymmetric & Symmetric speedups compare?
Recall Symmetric Multicore Chip, N = 256 BCEs

Recall $F=0.9$, $R=28$, Cores=9, Speedup=26.7
Asymmetric Multicore Chip, N = 256 BCEs

Asymmetric offers greater speedups potential than Symmetric

In Paper: As Moore’s Law increases N, Asymmetric gets better

Some arch. researchers should target asymmetric multicores
Asymmetric Multicore: 3 Software Issues

1. Schedule computation (e.g., when to use bigger core)
2. Manage locality (e.g., sending code or data can sap gains)
3. Synchronize (e.g., asymmetric cores reaching a barrier)

At What Level?
- Application Programmer
- Library Author
- Compiler
- Runtime System
- Operating System
- Hypervisor (Virtual Machine Monitor)
- Hardware

More Info (?)
More Leverage (?)
Outline

• Multicore Motivation & Research Paper Trends
• Recall Amdahl’s Law
• A Model of Multicore Hardware
• Symmetric Multicore Chips
• Asymmetric Multicore Chips
• Dynamic Multicore Chips
• Caveats & Wrap Up
Dynamic Multicore Chips, Take 1

• Why NOT Have Your Cake and Eat It Too?

• N Base Cores for Best Parallel Performance

• Harness R Cores Together for Serial Performance

• How? DYNAMICALLY Harness Cores Together
 – <insert favorite or TBD techniques here>
Dynamic Multicore Chips, Take 2

- Let POWER provide the limit of N BCEs
- While Area is Unconstrained (to first order)

Result: N base cores for parallel; large core for serial
- [Chakraborty, Wells, & Sohi, Wisconsin CS-TR-2007-1607]
- When Simultaneous Active Fraction (SAF) < ½
Performance of Dynamic Multicore Chips

- N Base Cores with R BCEs used Serially
- Serial Fraction 1-F uses R BCEs at rate Perf(R)
 \[\text{Serial time} = \frac{1 - F}{\text{Perf}(R)} \]
- Parallel Fraction F uses N base cores at rate 1 each
 \[\text{Parallel time} = \frac{F}{N} \]
- Therefore, w.r.t. one base core:
 \[\text{Dynamic Speedup} = \frac{1}{\frac{1 - F}{\text{Perf}(R)} + \frac{F}{N}} \]
Recall Asymmetric Multicore Chip, N = 256 BCEs

What happens with a dynamic chip?

F=0.99
R=41
Cores=216
Speedup=166
Dynamic multicore chip, N = 256 BCEs

Dynamic offers greater speedup potential than Asymmetric Arch. Researchers should target dynamically harnessing cores.

$F=0.99$
$R=256$ (vs. 41)
Cores=256 (vs. 216)
Speedup=223 (vs. 166)
Asymmetric Multicore: 3 Software Issues

1. Schedule computation (e.g., when to use bigger core)
2. Manage locality (e.g., sending code or data can sap gains)
3. Synchronize (e.g., asymmetric cores reaching a barrier)

At What Level?
- Application Programmer
- Library Author
- Compiler
- Runtime System
- Operating System
- Hypervisor (Virtual Machine Monitor)
- Hardware

Dynamic Challenges > Asymmetric Ones
Dynamic chips due to power likely
Outline

• Multicore Motivation & Research Paper Trends
• Recall Amdahl’s Law
• A Model of Multicore Hardware
• Symmetric Multicore Chips
• Asymmetric Multicore Chips
• Dynamic Multicore Chips

• Caveats & Wrap Up
Three Multicore Amdahl’s Law

Symmetric Speedup

\[
\text{Sequential Section} = \frac{1}{1 - \frac{F}{\text{Perf}(R)} + \frac{F}{\text{Perf}(R) \times N}} + \frac{F}{\text{Perf}(R) \times N}
\]

Asymmetric Speedup

\[
\text{Sequential Section} = \frac{1}{1 - \frac{F}{\text{Perf}(R)} + \frac{F}{\text{Perf}(R) \times (N - R)}} + \frac{F}{\text{Perf}(R) \times (N - R)}
\]

Dynamic Speedup

\[
\text{Sequential Section} = \frac{1}{1 - \frac{F}{\text{Perf}(R)} + \frac{F}{N}} + \frac{F}{N}
\]
Software Model Charges 1 of 2

• Serial fraction not totally serial
• Can extend software model to tree algorithms, etc.

• Parallel fraction not totally parallel
• Can extend for varying or bounded parallelism

• Serial/Parallel fraction may change
• Can extend for Weak Scaling [Gustafson, CACM’88]
• Run larger, more parallel problem in constant time
• But prudent architectures support Strong Scaling
Software Model Charges 2 of 2

- Synchronization, communication, scheduling effects?
- Can extend for overheads and imbalance

- Software challenges for asymmetric multicore worse
 Can extend for asymmetric scheduling, etc.

- Software challenges for dynamic multicore greater
 Can extend to model overheads to facilitate

- Future software will be totally parallel (see “my work”)
- I’m skeptical; not even true for MapReduce
Hardware Model Charges 1 of 2

- Naïve to consider total resources for cores fixed
- Can extend hardware model to how core changes effect The Rest

- Naïve to bound Cores by one resource (esp. area)
- Can extend for Pareto optimal mix of area, dynamic/static power, complexity, reliability, …

- Naïve to ignore challenges due to off-chip bandwidth limits & benefits of last-level caching
- Can extend for modeling these
Naïve to use performance = square root of resources
Can extend as equations can use any function

We architects can’t scale Perf(R) for very large R
True, not yet.

We architects can’t dynamically harness very large R
True, not yet

So what should computer scientists do about it?
Three-Part Charge

Architects: Build more-effective multicore hardware
• Don’t lament that we can’t do, but do it!

Computer Scientists: Implement “3rd Moore’s Law”
• Double Parallelism Every Two Years
• Consider Symmetric, Asymmetric, & Dynamic Chips

Finally, We must all work together
• Keep (cost-) performance gains progressing
• Parallel Programming & Parallel Computers
Dynamic Multicore Chip, $N = 1024$ BCEs

NOT Possible Today

NOT Possible EVER Unless We Dream & Act

8/6/2008

Wisconsin Multifacet Project
Executive Summary

• Develop A Corollary to Amdahl’s Law
 – Simple Model of Multicore Hardware
 – Complements Amdahl’s software model
 – Fixed chip resources for cores
 – Core performance improves sub-linearly with resources

• Research Implications
 (1) Need Dramatic Increases in Parallelism (No Surprise)
 • 99% parallel limits 256 cores to speedup 72
 (2) New Moore’s Law: Double Parallelism Every Two Years?
 (3) Many larger chips need increased core performance
 (4) HW/SW for asymmetric designs (one/few cores enhanced)
 (5) HW/SW for dynamic designs (serial ↔ parallel)
Symmetric Multicore Chip, N = 16 BCEs

Symmetric Speedup vs. R BCEs for different F values:

- F = 0.999
- F = 0.99
- F = 0.975
- F = 0.9
- F = 0.5
Symmetric Multicore Chip, N = 256 BCEs

Symmetric Speedup

R BCEs

F=0.999
F=0.99
F=0.975
F=0.9
F=0.5
Symmetric Multicore Chip, N = 1024 BCEs

The graph shows the symmetric speedup as a function of the number of BCEs (Basic Computational Elements) for different values of parameter F. The speedup decreases as the number of BCEs increases, and the curves diverge with different values of F: $F=0.999$, $F=0.99$, $F=0.975$, $F=0.9$, and $F=0.5$. The graph indicates that the speedup is significantly higher with lower values of F, especially for small numbers of BCEs.
Asymmetric Multicore Chip, N = 16 BCEs
Asymmetric Multicore Chip, N = 256 BCEs

Asymmetric Speedup vs R BCEs for different values of F:
- F = 0.999
- F = 0.99
- F = 0.975
- F = 0.9
- F = 0.5
Asymmetric Multicore Chip, N = 1024 BCEs

Asymmetric Speedup

R BCEs

F=0.999
F=0.99
F=0.975
F=0.9
F=0.5
Dynamic Multicore Chip, N = 16 BCEs

Dynamic Speedup

R BCEs

$F=0.999$

$F=0.99$

$F=0.975$

$F=0.9$

$F=0.5$
Dynamic Multicore Chip, N = 256 BCEs

Dynamic Speedup vs. R BCEs for different values of F:
- F = 0.999
- F = 0.99
- F = 0.975
- F = 0.9
- F = 0.5

8/6/2008 Wisconsin Multifacet Project
Dynamic Multicore Chip, N = 1024 BCEs

Dynamic Speedup

R BCEs

F=0.999

F=0.99

F=0.975

F=0.9

F=0.5