The understandability challenge in building diagnostic systems for non-experts everyone but the everyone but the omniscient admin

Ratul Mahajan Microsoft Research

UW MSR summer institute 2009

Diagnosis explains faulty behavior

Starts with problem symptoms Ends at likely cause(s)

Common considerations for a diagnostic system

Accuracy: How often the real culprit is identified Coverage: Fraction of failures covered Granularity: The detail at which culprit are identified

NetMedic: A detailed diagnostic system

Focus on small enterprises as a starting point

Inference based:

- Views the network as a dependency graph of finegrained components (e.g., applications, services)
- Produces a ranked list of likely culprit components using statistical and learning techniques

[Detailed diagnosis in enterprise networks, SIGCOMM 2009]

Effectiveness of NetMedic

Identifies the real culprit as the most likely 80% of the time but not always

Unleashing NetMedic-like systems on users

Understandability became a key hurdle

- How to present the analysis to the user?
- Impacts mean time to recovery

Two sub-problems at the intersection of systems and HCI

- Uncertainty visualization
- Intuitiveness of analysis

Uncertainty visualization

Presenting the results of statistical analysis

- Not much existing work; this uncertainty differs from that of typical scientific data
- Underlying assumption: humans can double check analysis if information is presented appropriately

An "HCI issue" that needs to be informed significantly by the underlying system structure

< < □ ♡ ← → 🗄 🤊 🖬 📂 🖨 👗 🚿

۰

ratul | UW MSR summer institute | '09

•

Top 10 culprits for app65 httpmonkey.exe 4 36000 urls-80.nmcfg :netmedic_02

<<p><</p>

56,240.96

00.02

00.00

00.04

00.00

00.05

00.00

00.02

00.00

15.11

10.75 01.41

00.99

00.56

Intuitiveness of analysis

The ability to reason about the system's analysis

- A non-traditional dimension of system effectiveness
- Counters the tendency of optimizing the system for incremental accuracy

A "systems issue" that needs to be informed significantly by HCI

Intuitiveness of analysis (2)

Goal: Go from mechanical measures to more human centric measures

Example: MoS measure for VoIP

Factors that should be considered

- What information is used?
 - E.g., Local vs. global
- What operations are used?
 - E.g., arithmetic vs. geometric means

Considerations for diagnostic systems

ratul | UW MSR summer institute | '09