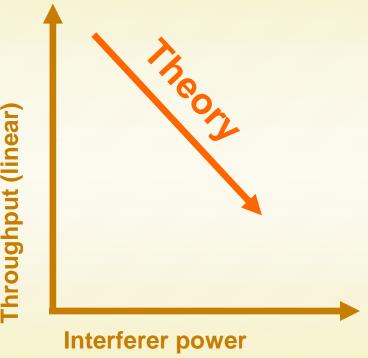
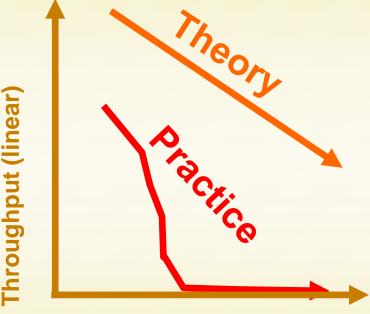
Low-Level Tools for Diagnosing Wireless Problems

Srinivasan Seshan (and many collaborators) Carnegie Mellon University


Growing Interference in Unlicensed Bands

 Anecdotal evidence of problems, but how severe and how do we fix this?

What do we expect?


- Throughput to decrease linearly with interference
- Easy to understand and predict
- Coexistence between technologies/neighbors easy \rightarrow just design each link to gracefully adapt to interference level

(log-scale)

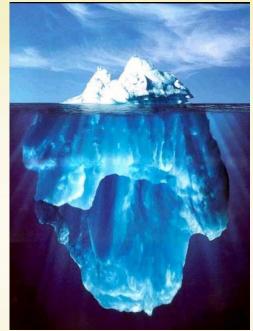
What we see...

- Hard to predict real behavior
- Effects of interference more severe in practice
 - Hardware limitations of commodity cards, which theory doesn't model
 - Protocols often designed to backoff
 - Most polite or most sensitive protocol loses ⁽³⁾

Interferer power (log-scale)

Paths to Solutions

Pair-wise coexistence


- Bluetooth/802.11
- Zigbee/802.11
- Etc...

Better coexistence

- Explicit spectrum management
- Controlled spatial reuse
 - Transmission power control
 - Directional antennas
- These techniques also lead to better performance
 - But... require changes to many parts of protocols
- Better diagnosis

Wireless Diagnosis

- State-of-the-art (DAIR, Jigsaw, Wit)
 - Enterprise settings with dense monitoring
 - 802.11 focus

- Home environments
 - Multiple technologies
 - Multiple administrative domains (i.e. homes)
 - Cheap, inexpensive devices with long lifetimes
 - Often external one-time help like GeekSquad

Diagnosis Tools

Wired Networks

- Ping
- Traceroute
- Tcpdump
- Etc.
- Solve problems related to node and reachability failures
- Led to "connectivity wizards" of today

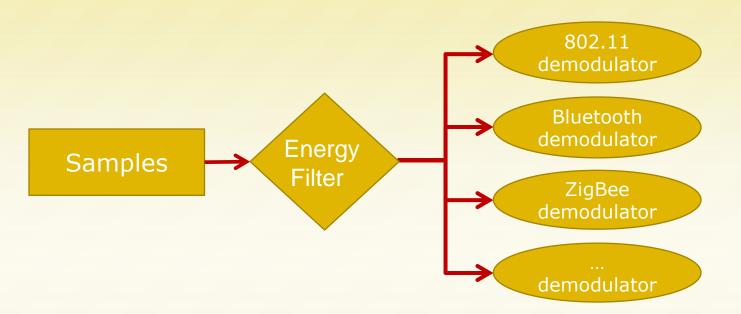
Wireless Networks

- Alternative: spectrum analyzers
 - Expensive, fail to provide context

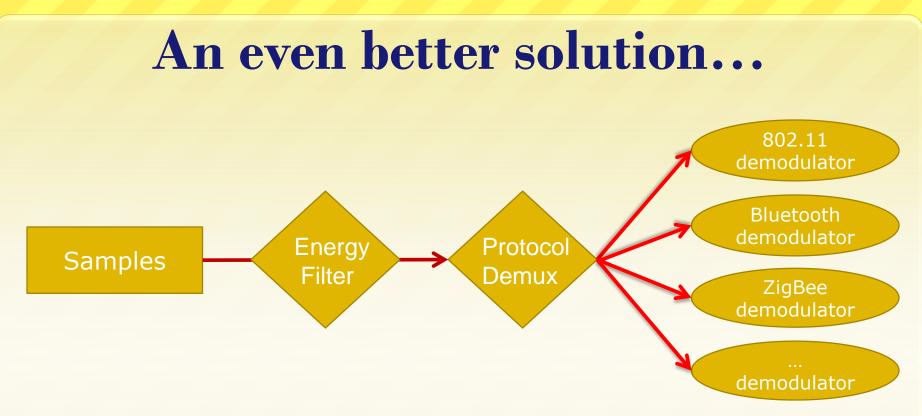
- Existing tools fail to observe source of the problem
 - Problems related to lowlevel link behavior
 - Interactions between technologies
 - Soft failures

Better Monitoring of Wireless Networks

- Combine tcpdump & spectrum analyzer
- Requirements:
 - Multi-protocol
 - Support at least a small (5-10) number of protocols/RF sources
 - Real-time detection
 - Near real-time throughput requirement
 - Some latency is ok
 - Protocol Extensible
 - Add support for newer protocols


Tcpdump Approach

Tcpdump – easy demultiplexing/decoding
Each layer specifies the next layer protocol



- Wireless medium shared by diverse datalink protocols
 - Physical layer gives no information on the nature of active transmissions

A Solution?

- Start with a software-defined radio
- Why is this unstatisfactory?
 - Demodulation is costly
 - Especially bad if medium utilization is high (3)

- Protocol demux quickly identifies protocol type
 - Basically adds "protocol" tag that tcpdump can use
- How to build a demux that is less expensive than demodulation?
 - Can accommodate error and latency → enables shortcuts
 - Optimize common techniques

Relevant Features for Detection

Protocol		Timing		Phase		Channel
		(μs)		(Modulation)		width
802.11	(Mbps)	Slot	SIFS	Scheme	Spreading	(MHz)
	b (1)	20	10	DBPSK^{a}	Barker	
	b (2)	20	10	DQPSK^{a}	Barker	22
	b $(5.5/11)$	20	10	DQPSK^{a}	CCK	
	g	9	10	OFDM ^{bc}		20
Bluetooth		Slot		GFSK	FHSS	1
		625		GLOV	сспл	T
802.15.4		Slot	IFS	ODGV		5
(ZigBee)		320	192/600	QPSK		5
Residential		AC cycle				10-75
Microwave		16667/20000				10-75

 a Preamble is sent using DBPSK

 $^b\mathrm{CTS}\text{-to-self}$ packets use one of the 802.11b rates

 $^{c}\mathrm{Uses}$ BPSK, QPSK, 16-QAM or 64-QAM for the subcarriers

So what next?

- Current prototype very limited by SDR hardware
 - Better SDR hardware now available
- Tcpdump != diagnosis
 - Enables collection of data
 - Observation and explanation of adverse interactions
 - Need to still fix things
 - Build signatures of poor interactions and appropriate corrective actions
- Not the only tool needed \rightarrow e.g. active tests
- 802.11/other wireless cards exposing greater information
 - How far can this get us?
- Is the network working correctly?