
1

Query Processing on Clusters

Communication-Cost Model

Multiway Joins

Recursion

2

Environment

Computing cluster with distributed file
system.

 E.g., GFS, HDFS.

Map-reduce implementation.

 E.g., Hadoop.

 Or extension to general acyclic workflow,
as in Clustera, Hyracks.

3

Communication Cost

 Assumption: efficiency of an algorithm
is tied to the sum of the input sizes to
all tasks.

 Justification:

1. Typically simple, main-memory operation
at each task, e.g., hash-join.

2. Large outputs are either input to another
task or aggregated in final result.

4

Multiway Join

Afrati/Ullman EDBT-2010.

Key idea: sometimes, a cascade of 2-
way joins, each implemented by a map-
reduce stage, is less efficient than a
single multiway join.

Intuition: if intermediate result is large,
communicating it costs more than
replicating tuples of the arguments.

5

Example: Star-Join

A1 A2

A3A4

B1 B2

B3B4

Large fact table

Smaller dimension tables

6

Implementing a Star Join

Use the A’s as a hash key, so the Map
tasks hash each fact tuple to one
Reduce task corresponding to a bucket.

 Optimization: each Ai is hashed a number
of ways inversely proportional to the size
of the dimension table (Ai, Bi).

 A tuple of dimension table i is sent to all
Reduce tasks corresponding to its value of
Ai (and any buckets for the other A’s).

7

Example: Star Join

Four dimension tables of equal size.

256 Reduce tasks.

Hash each Ai to 4 buckets.

Tuple (a,b) of dimension table (A2, B2)
is sent to 64 Reduce tasks
corresponding to hash values
(*,h(a),*,*).

8

Aster Data Approach

Hash and distribute the fact table
permanently.

Replicate the dimension tables as for a
join of all relations.

But they patented a strange approach
that is data-dependent.

We give optimal partitioning
independent of data.

9

Problem with Recursion

Map-reduce works because task failures
can be handled by restarting only the
failed task(s).

Why possible? Because each task
delivers output only at the end.

But recursive tasks must make outputs
and then process more input.

10

Solutions

1. HaLoop: use iterated map-reduce,
with attention to avoiding
redistribution of intermediate results.

2. Pregel: use recursive tasks but
checkpoint after every few rounds.

 Rollback on failure, but not too far.

11

Solutions – (2)

Work of Afrati, Vinayak Borkar, Mike
Carey, Alkis Polyzotis, Ullman.

If operations are idempotent (e.g.,
Datalog recursions computing sets),
then a recursive task can be restarted
anyway.

12

Solutions – (3)

In general (not idempotent) case, files
passed between tasks are replicated
anyway.

Master controller can restart a task,
provide previous input files, but throw
away output files previously delivered.

