
1

Query Processing on Clusters

Communication-Cost Model

Multiway Joins

Recursion

2

Environment

Computing cluster with distributed file
system.

 E.g., GFS, HDFS.

Map-reduce implementation.

 E.g., Hadoop.

 Or extension to general acyclic workflow,
as in Clustera, Hyracks.

3

Communication Cost

 Assumption: efficiency of an algorithm
is tied to the sum of the input sizes to
all tasks.

 Justification:

1. Typically simple, main-memory operation
at each task, e.g., hash-join.

2. Large outputs are either input to another
task or aggregated in final result.

4

Multiway Join

Afrati/Ullman EDBT-2010.

Key idea: sometimes, a cascade of 2-
way joins, each implemented by a map-
reduce stage, is less efficient than a
single multiway join.

Intuition: if intermediate result is large,
communicating it costs more than
replicating tuples of the arguments.

5

Example: Star-Join

A1 A2

A3A4

B1 B2

B3B4

Large fact table

Smaller dimension tables

6

Implementing a Star Join

Use the A’s as a hash key, so the Map
tasks hash each fact tuple to one
Reduce task corresponding to a bucket.

 Optimization: each Ai is hashed a number
of ways inversely proportional to the size
of the dimension table (Ai, Bi).

 A tuple of dimension table i is sent to all
Reduce tasks corresponding to its value of
Ai (and any buckets for the other A’s).

7

Example: Star Join

Four dimension tables of equal size.

256 Reduce tasks.

Hash each Ai to 4 buckets.

Tuple (a,b) of dimension table (A2, B2)
is sent to 64 Reduce tasks
corresponding to hash values
(*,h(a),*,*).

8

Aster Data Approach

Hash and distribute the fact table
permanently.

Replicate the dimension tables as for a
join of all relations.

But they patented a strange approach
that is data-dependent.

We give optimal partitioning
independent of data.

9

Problem with Recursion

Map-reduce works because task failures
can be handled by restarting only the
failed task(s).

Why possible? Because each task
delivers output only at the end.

But recursive tasks must make outputs
and then process more input.

10

Solutions

1. HaLoop: use iterated map-reduce,
with attention to avoiding
redistribution of intermediate results.

2. Pregel: use recursive tasks but
checkpoint after every few rounds.

 Rollback on failure, but not too far.

11

Solutions – (2)

Work of Afrati, Vinayak Borkar, Mike
Carey, Alkis Polyzotis, Ullman.

If operations are idempotent (e.g.,
Datalog recursions computing sets),
then a recursive task can be restarted
anyway.

12

Solutions – (3)

In general (not idempotent) case, files
passed between tasks are replicated
anyway.

Master controller can restart a task,
provide previous input files, but throw
away output files previously delivered.

