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New Programming Model, New Problems (and some old, unsolved 

ones)
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Concurrency
Inherently concurrent programming

• Asynchronous, message-driven model

• Multiple requests streams

Threads or events??

• Threads offer familiar sequential programming model
– But, state can change when thread is preempted (synchronization)

– Cost of thread and context switch limits concurrency

• Handlers fracture program control flow
– Logic split across event handlers

– Explicit manipulation of local state (no stack frames)

Higher-level (state machine, Actor, …) models?

Lack of consensus inhibits research, development, reuse, interoperability

• Parallel programming, redux
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Parallelism
Computers are parallel

• Increased performance + power efficiency

Computers will be heterogeneous

• Multiple, non-isomorphic functional units

Data centers are vast message-passing clusters

• Availability and throughput

Parallel programming is long-standing sore point for computer science

• State of the art: threads and synchronization (assembly language)

• No consensus on shared memory semantics

New research on higher-level models is not panaceas

• Transactional memory

• Deterministic parallelism

Radical proposal: abolish shared memory

• Message passing is inherent in distributed systems, so why 2 models?

• Shared memory is difficult and error prone
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Message Passing
Fundamental in distributed systems and better programming model

• Performance / correctness isolation

• Well-defined points of interaction

• Scalable

More difficult to use

• Little language support
– Erlang integrates message with pattern matching

– Sing# channel contracts

– Sing# postbox semantics

• Message passing libraries
– Fundamental mismatch: asynchronous strange in a synchronous world

Open problems

• Control structures for asynchronous messages

• Communications contracts

• Integration of messages in type system and memory model
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Distribution
Distributed systems are rich source of difficult problems

• Replication

• Consistency

• Quorum

Well-studied field with good solutions

• Outsider’s perspective: research has focused on fundamental problems and techniques used in 
real systems

Common abstractions

• Replication

• Relaxed consistency

• Persistence

How can these techniques be incorporated into programming model?

• Libraries

• Language integration

• New models
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Availability
Services must be highly available

• Blackberry/Google/… outage gets national media attention

• Affect millions of people simultaneously

• Service becomes part of national infrastructure

High availability is challenge

• Starts with design and engineering

• Hard to eliminate all “single points of failure”

• Murphy’s law rules

• Antithetical to rapid software evolution

Programming models provide little support for systematic error handling

• Disproportionate software defects in error-handling code
– Afterthought

– Run in inconsistent state

– Difficult to test

• Erlang has systematic philosophy of fail and notify (but stateless)

• Could lightweight transactions simplify rollback for stateful languages?
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Performance
Performance is system-level concern

• Goes far beyond the code running on a machine

• Most performance tools focus on low-level details

Current approach is wasteful and uncertain

• Build, observe, tweak, overprovision, pray

Performance should be specified as part of behavior

• SLAs as well as pre-/post-conditions

Need scalability

• Grow by adding machines, not rewriting software

Architecture should be the starting point

• Model and simulate before building a system

• What is equivalent of Big-O notation for scalability?

Adaptivity

• Systems need to be introspective and capable of adapting behavior to load

• e.g., simplify home page when load spikes, defer low-priority tasks, provision more machines, …
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Power
New challenge is power consumption

• Processor performance limited by power

– Multicore only a temporary solution – “dark silicon”

• Data center locally and globally power constrained

– Significant cost (CAPEX + OPEX)

Power-efficient software design and construction

• Equivalent of asymptotic analysis for power?

• How to measure power consumption?

• How to compare alternatives?

• Design patterns

http://upload.wikimedia.org/wikipedia/commons/3/34/Kolben-Generator.jpg


Application Partitioning
Static partition of functionality between client and server

• Clients have different architectures and capabilities

• Adapt to changing constraints (e.g., battery)

• Move computation to data, particularly when communications 
constrained

• Code mobility

– Exists in data center (VMs), why not across data center boundary?

Currently, client and server are two fundamentally different applications

• Evolution around interfaces

• Volta (Microsoft)

– Single program model, compiled for server and client
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Defect Detection
Considerable progress in past decade on defect detection tools

• Tools focused on local properties (e.g., buffer overruns, test coverage, races, etc.)

• Little work on system-wide properties

Modular checking

• Whole program analysis expensive and difficult

• Not practical for services

• Assertions and annotations at module boundaries

• Can check global properties locally

• e.g., Rajamani & Rehof’s Conformance Checking

New domain of defects

• Message passing

• Code robustness

• Potential performance bottlenecks
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High-Level Abstractions
Map-reduce and dataflow abstractions simplify large-scale data 

analysis in data centers

• Convenient way to express problems

• Hide complex details (distribution, failure, restart)

• Allow optimization (speculation) 

• Not appropriate for services

Need abstractions for wider range of problems

• Interactive applications
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Orleans
Goals

• Simple, widely accessible programming model

• Encourage use of scalable, resilient software architectures

• Raise level of abstraction (CLR – Windows ≈ Orleans – Azure)

Grains are unit of computation and data storage (Actors)

• Can migrate between data centers

• Replication, consistency, persistence handled by runtime system

One programming model for client and server

• Simplify development, debugging, performance tuning, etc.

• Single-source distributed programs (eg Volta)

• Enable code mobility
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Orleans Architecture
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