
Cloud Programming
James Larus

Microsoft Research

July 13, 2010



New Programming Model, New Problems (and some old, unsolved 

ones)

2

Concurrency

Parallelism

Message passing

Distribution

High availability

Performance

Application partitioning

Defect detection High-level abstractions



Concurrency
Inherently concurrent programming

• Asynchronous, message-driven model

• Multiple requests streams

Threads or events??

• Threads offer familiar sequential programming model
– But, state can change when thread is preempted (synchronization)

– Cost of thread and context switch limits concurrency

• Handlers fracture program control flow
– Logic split across event handlers

– Explicit manipulation of local state (no stack frames)

Higher-level (state machine, Actor, …) models?

Lack of consensus inhibits research, development, reuse, interoperability

• Parallel programming, redux

3



Parallelism
Computers are parallel

• Increased performance + power efficiency

Computers will be heterogeneous

• Multiple, non-isomorphic functional units

Data centers are vast message-passing clusters

• Availability and throughput

Parallel programming is long-standing sore point for computer science

• State of the art: threads and synchronization (assembly language)

• No consensus on shared memory semantics

New research on higher-level models is not panaceas

• Transactional memory

• Deterministic parallelism

Radical proposal: abolish shared memory

• Message passing is inherent in distributed systems, so why 2 models?

• Shared memory is difficult and error prone

4



Message Passing
Fundamental in distributed systems and better programming model

• Performance / correctness isolation

• Well-defined points of interaction

• Scalable

More difficult to use

• Little language support
– Erlang integrates message with pattern matching

– Sing# channel contracts

– Sing# postbox semantics

• Message passing libraries
– Fundamental mismatch: asynchronous strange in a synchronous world

Open problems

• Control structures for asynchronous messages

• Communications contracts

• Integration of messages in type system and memory model

5



Distribution
Distributed systems are rich source of difficult problems

• Replication

• Consistency

• Quorum

Well-studied field with good solutions

• Outsider’s perspective: research has focused on fundamental problems and techniques used in 
real systems

Common abstractions

• Replication

• Relaxed consistency

• Persistence

How can these techniques be incorporated into programming model?

• Libraries

• Language integration

• New models

6



Availability
Services must be highly available

• Blackberry/Google/… outage gets national media attention

• Affect millions of people simultaneously

• Service becomes part of national infrastructure

High availability is challenge

• Starts with design and engineering

• Hard to eliminate all “single points of failure”

• Murphy’s law rules

• Antithetical to rapid software evolution

Programming models provide little support for systematic error handling

• Disproportionate software defects in error-handling code
– Afterthought

– Run in inconsistent state

– Difficult to test

• Erlang has systematic philosophy of fail and notify (but stateless)

• Could lightweight transactions simplify rollback for stateful languages?

7



Performance
Performance is system-level concern

• Goes far beyond the code running on a machine

• Most performance tools focus on low-level details

Current approach is wasteful and uncertain

• Build, observe, tweak, overprovision, pray

Performance should be specified as part of behavior

• SLAs as well as pre-/post-conditions

Need scalability

• Grow by adding machines, not rewriting software

Architecture should be the starting point

• Model and simulate before building a system

• What is equivalent of Big-O notation for scalability?

Adaptivity

• Systems need to be introspective and capable of adapting behavior to load

• e.g., simplify home page when load spikes, defer low-priority tasks, provision more machines, …

8



Power
New challenge is power consumption

• Processor performance limited by power

– Multicore only a temporary solution – “dark silicon”

• Data center locally and globally power constrained

– Significant cost (CAPEX + OPEX)

Power-efficient software design and construction

• Equivalent of asymptotic analysis for power?

• How to measure power consumption?

• How to compare alternatives?

• Design patterns

http://upload.wikimedia.org/wikipedia/commons/3/34/Kolben-Generator.jpg


Application Partitioning
Static partition of functionality between client and server

• Clients have different architectures and capabilities

• Adapt to changing constraints (e.g., battery)

• Move computation to data, particularly when communications 
constrained

• Code mobility

– Exists in data center (VMs), why not across data center boundary?

Currently, client and server are two fundamentally different applications

• Evolution around interfaces

• Volta (Microsoft)

– Single program model, compiled for server and client

10



Defect Detection
Considerable progress in past decade on defect detection tools

• Tools focused on local properties (e.g., buffer overruns, test coverage, races, etc.)

• Little work on system-wide properties

Modular checking

• Whole program analysis expensive and difficult

• Not practical for services

• Assertions and annotations at module boundaries

• Can check global properties locally

• e.g., Rajamani & Rehof’s Conformance Checking

New domain of defects

• Message passing

• Code robustness

• Potential performance bottlenecks

11



High-Level Abstractions
Map-reduce and dataflow abstractions simplify large-scale data 

analysis in data centers

• Convenient way to express problems

• Hide complex details (distribution, failure, restart)

• Allow optimization (speculation) 

• Not appropriate for services

Need abstractions for wider range of problems

• Interactive applications

12



Orleans
Goals

• Simple, widely accessible programming model

• Encourage use of scalable, resilient software architectures

• Raise level of abstraction (CLR – Windows ≈ Orleans – Azure)

Grains are unit of computation and data storage (Actors)

• Can migrate between data centers

• Replication, consistency, persistence handled by runtime system

One programming model for client and server

• Simplify development, debugging, performance tuning, etc.

• Single-source distributed programs (eg Volta)

• Enable code mobility

13



Orleans
Application

(Cloud Component)

Data Center
(Azure)

Grain Activation

Promise

Library

Clients

Application
(Client Component)

Orleans Runtime

Orleans Runtime

Grain



Orleans Architecture

15

Azure

Internet 
Application

DC# Tools

Orleans Runtime

Geo-Distribution Data Replication and Consistency

Performance Monitoring Adaptive Control

Distributed DebuggingRuntime (Correctness) Monitoring

Deployment, Configuration, Maintenance




