
Jingren Zhou

Microsoft Corp.

BING Computing/Storage

Front-End On-
Line Web-

Serving

Back-End
Batch

Data Analysis

Crawling

Internet

Other Data

User & System Data

Data for
On-Line

Work

Results
Large

Read-Only
Datasets

BING Computing/Storage

Front-End On-
Line Web-

Serving

Back-End
Batch

Data Analysis

Crawling

Internet

Other Data

User & System Data

Data for
On-Line

Work

Results
Large

Read-Only
Datasets

Microsoft Bing Infrastructure
 BING applications fall into two broad categories:

 Back-end: Massive batch processing creates new datasets
 Front-end: Online request processing serves up and captures information

 SCOPE/Cosmos provides storage and computation for Back-End Batch
data analysis

SCOPE

SCOPE / Cosmos
 A hybrid of parallel database and

MapReduce system

 SCOPE
 A SQL-like declarative language

 Fully integrated with .NET framework

 Highly extensible and flexible

 Cosmos Storage System
 Append-only distributed file system

for storing petabytes of data

 Optimized for sequential I/O

 Data is compressed and replicated

 Data comes in two formats
 Unstructured streams

 Structured streams

Cosmos Storage System

SCOPE Compiler

SCOPE Runtime

SCOPE
Optimizer

SCOPE Script

Cosmos Execution Environment (Dryad)

Unstructured
Streams

Structured Streams

Cosmos
Extents

Cosmos
Extents

Cosmos
Extents

SCOPE (VLDB’08)
 tructured omputations ptimized for arallel xecution

 A declarative scripting language

 Easy to use: SQL-like syntax plus MapRecuce-like extensions

 Modular: provides a rich class of runtime operators

 Highly extensible:

 Fully integrated with .NET framework

 Provides interfaces for customized operations

 Flexible programming style: nested expressions or a series of
simple transformations

 Users focus on problem solving as if on a single machine

 System complexity and parallelism are hidden

An Example: QCount
Compute the popular queries that have been requested at least 1000 times

SELECT query, COUNT(*) AS count
FROM “search.log” USING LogExtractor
GROUP BY query
HAVING count> 1000
ORDER BY count DESC;

OUTPUT TO “qcount.result”

e = EXTRACT query
FROM “search.log” USING LogExtractor;

s1 = SELECT query, COUNT(*) AS count
FROM e GROUP BY query;

s2 = SELECT query, count
FROM s1 WHERE count> 1000;

s3 = SELECT query, count
FROM s2 ORDER BY count DESC;

OUTPUT s3 TO “qcount.result”

SCOPE Optimizer (ICDE’10)
 A transformation-based optimizer based on the

Cascade framework

 Reasons about a rich set of logical/physical operators

 Employs traditional database optimization techniques

 Chooses an optimal plan based on cost estimates

 Goals:

 Seamless generate both serial and parallel plans

 Reasons about partitioning, sorting, grouping properties
in a single uniform framework

SCOPE Execution
 SCOPE Runtime

 Provides a rich class of composable physical operators

 Operators are implemented using the iterator model

 Executes a series of operators in a pipelined fashion

 A SCOPE query plan

 A DAG of SCOPE vertices

 Each vertex consists of a serial of runtime operators

 It relies on the job manager to schedule vertices at
runtime

Structured Streams
 Structured streams have well-defined schema

 Data is transparently partitioned

 Local index on each partition is maintained

 Structured streams offer many performance benefits
 Rich structural properties for optimization

 Avoid unnecessary partitioning, sorting, etc.

 Rich data access methods (through local index)

 Column-wise optimization

 Dynamic management of partitions
 Automatically deal with data skewness and adapt to changing data

distribution

 Efficient and flexible physical design

Conclusions
 SCOPE/Cosmos is a hybrid system of MapReduce and

traditional parallel database

 Extensively used in cloud-scale data centers at Microsoft
Bing

 Optimization greatly improves query performance

 Systematically reasons about structural properties
(partitioning, grouping, and sorting), functional
dependencies, and their interactions

 Seamlessly integrates optimization of both serial and parallel
plans into a single uniform framework

