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Talk Outline

• Database-as-a-Service 

• SQL Azure

– Overview

– Deployment and Monitoring

– High availability

– Scalability

• Lessons and insight
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SQL Azure Database as a Service

• On-demand provisioning of SQL databases

• Familiar relational programming model

– Leverage existing skills and tools

• SLA for availability and performance

• Pay-as-you-go pricing model

• Full control over logical database administration

– No physical database administration headaches

• Large geo-presence

– 3 regions (US, Europe, Asia), each with 2 sub-regions
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Challenges And Our Approach

• Challenges

– Scale – storage, processing, and delivery

– Consistency – transactions, replication, failures, HA

– Manageability – deployment and self-management

• Our approach

– SQL Server technology as node storage

– Distributed fabric for self-healing and scale

– Automated deployment and provisioning (low OpEx)

– Commodity hardware for reduced CapEx

– Software to achieve required reliability
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SQL Azure model

• Each account has zero or more servers
– Azure wide, provisioned in a common portal
– Billing instrument

• Each server has one or more databases
– Zone for authentication:  userId+password
– Zone for administration and billing

• Metadata about the databases and usage

– Network access control based on client IP
– Has unique DNS name and unit of geo-location

• Each database has standard SQL objects
– Unit of consistency and high availability 

(autonomous replication)
– Contains Users, Tables, Views, Indices, etc…
– Most granular unit of usage reports
– Three SKUs available (1GB, 10GB and 50GB)
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ARCHITECTURE
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Network Topology
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Application

Internet
Azure Cloud

LB

TDS (tcp)

TDS (tcp)

TDS (tcp)

Applications use standard SQL 
client libraries: ODBC, ADO.Net, 
PHP, JDBC, …

Load balancer forwards ‘sticky’ 
sessions to TDS protocol tier

Security Boundary

SQL SQL SQL SQL SQLSQL

Gateway Gateway Gateway Gateway Gateway Gateway

Gateway: TDS protocol gateway, enforces AUTHN/AUTHZ policy; proxy to SQL tier

Scalability and Availability: Fabric, Failover, Replication, and  Load balancing



HIGH AVAILABILITY
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Concepts
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Storage Unit
• Supports CRUD 
operations
e.g. DB row

Consistency Unit
(aka Rowgroup)
• Set of storage units 
• Specified by “application”
• Range partitioned or entire DB
• SQL Azure uses entire DB only

• Infra supports both

Failover Unit 
(aka Partition)
• Unit of management
• Group of consistency units
• Determined by the system
• Can be split or merged at
consistency unit boundaries



Data Consistency

• Each Failover Unit is replicated for HA

– Desired replica count is configurable and actual 
count is dynamic at runtime

• Clients must see the same linearized order of 
read and write operations

• Replica set is dynamically reconfigured 
to account for member arrivals 
and departures

– Read-Write quorums are supported and 
are dynamically adjusted
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Replication

• All reads are 
completed 
at the primary

• Writes replicated to 
write quorum of 
replicas

• Commit on 
secondaries first 
then primary

• Each transaction 
has a commit 
sequence number 
(epoch, num)
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Reconfiguration
• Types of reconfiguration

– Primary failover

– Removing a failed secondary 

– Adding recovered replica

– Building a new secondary

• Assumes
– Failure detector

– Leader election

– Both services provided 
by Fabric layer
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Partition Management

• Partition Manager (PM) is a highly available 
service running in the Master cluster
– Ensures all partitions are operational

– Places replicas across failure domains 
(rack/switch/server)

– Ensures all partitions have target replica count

– Balances the load across all the nodes

• Each node manages multiple partitions

• Global state maintained by the PM can be 
recreated from the local node state in event of 
disaster (GPM rebuild)
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System in Operation

Primary Master Node

Primary SecondarySecondary

Fabric
Leader 
Elector

Partition Manager

Partition Placement 
Advisor

SQL 
Server

Global 
Partition 

Map

Fabric 

Data Node 
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SQL node Architecture

• Single physical DB for entire node

• DB files and log shared across 
every logical database/partition
– Allows better logging throughput 

with sequential IO/group commits

– No auto-growth on demand stalls

– Uniform manageability and backup

• Each partition is a “silo” with its 
own independent schema

• Local SQL backup guards against 
software bugs
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Recap

• Two kinds of nodes:
– Data nodes store application data

– Master nodes store cluster metadata

• Node failures are reliably detected
– On every node, SQL and Fabric processes monitor 

each other

– Fabric processes monitor each other across nodes

• Local failures cause nodes to fail-fast

• Failures cause reconfiguration and placement 
changes
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DEPLOYMENT
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L2 Switch

• Each rack hosts 2 pods of 20 
machines each

• Each pod has a TOR mini-
switch 
• 10GB uplink to L2 switch

• Each SQL Azure machine runs 
on commodity box

• Example:
• 8 cores
• 32 GB RAM
• 1TB+ SATA drives
• Programmable power
• 1Gb NIC

• Machine spec changes as 
hardware (pricing) evolves

Hardware Architecture
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Hardware Challenges

• SATA drives
– On-disk cache and lack of true "write through" results in 

Write Ahead Logging violations
• DB requires in-order writes to be honored

• Can force flush cache, but causes performance degradation

– Disk failures happen daily (at scale), fail-fast on those
• Bit-flips (enabled page checksums)

• Drives just disappear

• IOs are misdirected

• Faulty NIC
– Encountered message corruption

• Enabled message signing and checksums
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Software Deployment 

• OS is automatically imaged via deployment

• All the services are setup using file copy
– Guarantees on which version is running

– Provides fast switch to new version 

– Minimal global state allows running side by side

– Yes, that includes the SQL Server DB engine

• Rollout is monitored to ensure high availability
– Knowledge of replica state health ensure SLA is met

– Two phase rollouts for data or protocol changes

• Leverages internal Autopilot technologies with SQL 
Azure extensions
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Software Challenges

• Lack of real-time OS features
– CPU priority

• High priority for Fabric lease traffic

– Page Faults/GC
• Locked pages for SQL and Fabric (in managed code)

• Fail fast or not?
– Yes, for corruption/AV

– No, for other issues unless centrally controlled

• What is really considered failed?
– Some failures are non-deterministic or hangs

– Multiple protocols / channels means partial failures too
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Monitoring

• Health model w/repair actions
– Reboot  Re-deploy  Re-image (OS)  RMA cycle

• Additional monitoring for SQL tier
– Connect / network probes

– Memory leaks / hung worker processes

– Database corruption detection

– Trace and performance stats capture
• Sourced from regular SQL trace and support mechanisms

• Stored locally and pushed to a global cluster wide store

• Global cluster used for service insight and problem 
tracking
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LESSONS LEARNED
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How is Cloud Different?
Minor differences:

• Cheap hardware
– No SANs, no SCSI, no Infiniband
– Iffy routers, network cards
– Relatively homogeneous
– Hardware not selected for the purpose

• Lots of it
– Not one machine, not 10 machines – think 1000+

• Public internet
– High latencies, sometimes
– All over the world
– Scary people (untrusted) lurking in the shadows
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How is Cloud Different?

Real differences:

• You are responsible for the whole thing
– No such thing as “can you send us a repro”

– No such thing as “it’s a hardware problem” (it’s us)

– No such thing as “it’s a network issue” (it’s us)

– No such thing as “it’s a configuration issue” (it’s us)

– No such thing as “It’s not us, it’s DNS” (it’s us)

– No such thing as “It’s not us, it’s AD” (it’s us)

• User expectations: it’s a utility!
– Utility of databases, not instances or servers

– Highly available (means “it’s there” not “replication has been enabled”)

– Elastic (you need more, you can have it right away)

– Load-balanced (automatically)

– And yet: symmetric (“give me cursors or give me death”) 25



Design for Failure

• Common mistake #1: Failures can be eliminated
– Everybody fails!  Hardware, software, universe

• Common mistake #2: All failures can be detected
– No watchdog is fast enough or good enough

• Common mistake #3: Failures can be enumerated
– Cannot deal with issues one at a time
– Must take a holistic, statistical approach
– Learn only as much as you need to take action

• Common mistake #4: Failures can be dealt with independently
– Local observation generates insufficient insight, leads to global 

disasters
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Design for Failure
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Design for Mediocre

• Network is not fast or slow, it varies
– Design for huge latency variance
– Machine independence is key

• Machines are not up or down, they are kind of slow
– Measure, it’s never black-and-white

• People are not good or fired, they all make mistakes
– Tools and processes to minimize risk

• Environment is often iffy
– Integrated security? Not so fast…

• It’s less important to succeed, than to know the difference
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Design for (appropriate) Simplicity
• There’s no such thing as a “repro”

– Everything must be debuggable from logs (and dumps)
– This is much harder than it sounds – takes time to log the right stuff

• System state must be externally examinable 
– Not locked in internal data structures

• Fail-fast 
– Is great! Very hard to reason about partial failures.  We kill it fast.
– Is awful! Cascading failures can kill entire system if you are not careful
– Principle: If you are sure it’s local, kill it.  If not, not so fast

• ‘No workflows’ is best
– Machine independence is a virtue
– Things that can safely be local, should be

• Single-level workflows is next (reduce number of moving parts)
– Resumable (not tied to a specific machine)
– Design with failure as norm using distributed (persisted) state machines
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Design for many

• Many machines is great!

– Reduce focus on machine reliability
• By the time RDBMS runs recovery, the world has moved on

– Distribution enables load-balancing
• Focus on elasticity and flexibility

– HA with 100 machines is better than 2
• Load distribution, parallelism of copy

• Many machines is hard!

– Elasticity needs to be built in

– All operations must be multi-machine

– Correlated failures are a fact of life
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Design for multi-tenancy

• Customers like using many machines

– Enables load-balancing and elasticity

– But they don’t like paying for many machines

• Solution: multi-tenancy!

– Everyone gets many slices

• Hard!

– Isolation for security and performance

– Many small databases? Costs….

– Many relationships (replication)

– Tradeoffs: isolation vs. elasticity?
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Local vs. Global
Balance between local and global is key!

• “Normal case” decisions must be local
– Any global state (e.g. routes) must be cached
– The fewer parties are involved, the better
– Otherwise: bottlenecks, single points of failure

• “Special case” decisions must be global
– How to react to an error?
– When to failover?
– When and where to balance load?
– When and how to upgrade software?
– Otherwise: instability, chaos, low availability

• Data must be where it is needed
– Global data needed for local operations must be cached locally
– Local data needed for management must be aggregated globally
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Real Symmetry is End-to-End

• Symmetry is not just about surface area

– Too much focus on features

• It’s not symmetric if:

– If the syntax is the same, but it works in subtly different ways

– If my connection drops too often

– If the latency causes me to put everything in SPs

– If operations unpredictably take 10x as long sometimes

• Customers want clarity, predictability, and minimal 
learning curve
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Summary

• Cloud is different
– Not a different place to host code

• Opportunities are great
– Customers want a utility approach to storage

– New businesses and abilities in scale, availability, etc

• But the price must be paid
– Which is a good thing, otherwise everyone would be 

doing it!
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Future Work and Challenges

• Performance SLAs
– Delivering on “guaranteed capacity” while consolidating diverse 

workloads is hard

• Privacy, Governance and Compliance
– Perceptions and realities
– Private Cloud appliances

• Programming Models
– Support for loosely coupled scaleout patterns such as sharding
– Transparent multi-node scaleout

• Data Redundancy
– Point in time restore (backup knobs)
– Geo-availability for multiple points of presence

• Health Model for Applications
– Data tier is only part of the problem – support for hosting N-tier 

apps and providing insight into health and performance
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QUESTIONS?
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SQL Azure Links

• SQL Azure
http://www.microsoft.com/windowsazure/sqlazure/

• SQL Azure “under the hood” 
http://www.microsoftpdc.com/sessions/tags/sqlazure

• SQL Azure Fabric
http://channel9.msdn.com/pdc2008/BB03/

37

http://www.microsoft.com/windowsazure/sqlazure/
http://www.microsoft.com/windowsazure/sqlazure/
http://www.microsoftpdc.com/sessions/tags/sqlazure
http://www.microsoftpdc.com/sessions/tags/sqlazure
http://channel9.msdn.com/pdc2008/BB03/
http://channel9.msdn.com/pdc2008/BB03/

