
SQL Azure: Database-as-a-Service
What, how and why Cloud is different

Nigel Ellis <nigele@microsoft.com>

July 2010

Talk Outline

• Database-as-a-Service

• SQL Azure

– Overview

– Deployment and Monitoring

– High availability

– Scalability

• Lessons and insight

2

SQL Azure Database as a Service

• On-demand provisioning of SQL databases

• Familiar relational programming model

– Leverage existing skills and tools

• SLA for availability and performance

• Pay-as-you-go pricing model

• Full control over logical database administration

– No physical database administration headaches

• Large geo-presence

– 3 regions (US, Europe, Asia), each with 2 sub-regions

3

Challenges And Our Approach

• Challenges

– Scale – storage, processing, and delivery

– Consistency – transactions, replication, failures, HA

– Manageability – deployment and self-management

• Our approach

– SQL Server technology as node storage

– Distributed fabric for self-healing and scale

– Automated deployment and provisioning (low OpEx)

– Commodity hardware for reduced CapEx

– Software to achieve required reliability

4

SQL Azure model

• Each account has zero or more servers
– Azure wide, provisioned in a common portal
– Billing instrument

• Each server has one or more databases
– Zone for authentication: userId+password
– Zone for administration and billing

• Metadata about the databases and usage

– Network access control based on client IP
– Has unique DNS name and unit of geo-location

• Each database has standard SQL objects
– Unit of consistency and high availability

(autonomous replication)
– Contains Users, Tables, Views, Indices, etc…
– Most granular unit of usage reports
– Three SKUs available (1GB, 10GB and 50GB)

5

Account

Server

Database

ARCHITECTURE

6

Network Topology

7

Application

Internet
Azure Cloud

LB

TDS (tcp)

TDS (tcp)

TDS (tcp)

Applications use standard SQL
client libraries: ODBC, ADO.Net,
PHP, JDBC, …

Load balancer forwards ‘sticky’
sessions to TDS protocol tier

Security Boundary

SQL SQL SQL SQL SQLSQL

Gateway Gateway Gateway Gateway Gateway Gateway

Gateway: TDS protocol gateway, enforces AUTHN/AUTHZ policy; proxy to SQL tier

Scalability and Availability: Fabric, Failover, Replication, and Load balancing

HIGH AVAILABILITY

8

Concepts

9

Storage Unit
• Supports CRUD
operations
e.g. DB row

Consistency Unit
(aka Rowgroup)
• Set of storage units
• Specified by “application”
• Range partitioned or entire DB
• SQL Azure uses entire DB only

• Infra supports both

Failover Unit
(aka Partition)
• Unit of management
• Group of consistency units
• Determined by the system
• Can be split or merged at
consistency unit boundaries

Data Consistency

• Each Failover Unit is replicated for HA

– Desired replica count is configurable and actual
count is dynamic at runtime

• Clients must see the same linearized order of
read and write operations

• Replica set is dynamically reconfigured
to account for member arrivals
and departures

– Read-Write quorums are supported and
are dynamically adjusted

10

Replication

• All reads are
completed
at the primary

• Writes replicated to
write quorum of
replicas

• Commit on
secondaries first
then primary

• Each transaction
has a commit
sequence number
(epoch, num)

11

P

S

S

S

S
WriteWrite

WriteWrite

AckAck
Ack

Ack

Read
Value

Write

Ack

Reconfiguration
• Types of reconfiguration

– Primary failover

– Removing a failed secondary

– Adding recovered replica

– Building a new secondary

• Assumes
– Failure detector

– Leader election

– Both services provided
by Fabric layer

12

P

S

S

S

S

S

Safe in the presence of
cascading failures

B P

X
Failed

X Failed

Partition Management

• Partition Manager (PM) is a highly available
service running in the Master cluster
– Ensures all partitions are operational

– Places replicas across failure domains
(rack/switch/server)

– Ensures all partitions have target replica count

– Balances the load across all the nodes

• Each node manages multiple partitions

• Global state maintained by the PM can be
recreated from the local node state in event of
disaster (GPM rebuild)

13

System in Operation

Primary Master Node

Primary SecondarySecondary

Fabric
Leader
Elector

Partition Manager

Partition Placement
Advisor

SQL
Server

Global
Partition

Map

Fabric

Data Node
103

P

S
S

Data Node
104

S
S

Data Node
102

P

S
S

S

Data Node
105

P
S
S
S

Data Node
101

S
S

P

Load Balancer
Partition

Management

Data Node
100

S

P
S

S

P

S
S

S

14

SQL node Architecture

• Single physical DB for entire node

• DB files and log shared across
every logical database/partition
– Allows better logging throughput

with sequential IO/group commits

– No auto-growth on demand stalls

– Uniform manageability and backup

• Each partition is a “silo” with its
own independent schema

• Local SQL backup guards against
software bugs

15

Machine

SQL Instance

CloudNode

DB5 DB1 DB7

master

tempdb

msdb

DB1 DB2 master

DB3 DB4 DB7

Recap

• Two kinds of nodes:
– Data nodes store application data

– Master nodes store cluster metadata

• Node failures are reliably detected
– On every node, SQL and Fabric processes monitor

each other

– Fabric processes monitor each other across nodes

• Local failures cause nodes to fail-fast

• Failures cause reconfiguration and placement
changes

16

DEPLOYMENT

17

L2 Switch

• Each rack hosts 2 pods of 20
machines each

• Each pod has a TOR mini-
switch
• 10GB uplink to L2 switch

• Each SQL Azure machine runs
on commodity box

• Example:
• 8 cores
• 32 GB RAM
• 1TB+ SATA drives
• Programmable power
• 1Gb NIC

• Machine spec changes as
hardware (pricing) evolves

Hardware Architecture

18

Hardware Challenges

• SATA drives
– On-disk cache and lack of true "write through" results in

Write Ahead Logging violations
• DB requires in-order writes to be honored

• Can force flush cache, but causes performance degradation

– Disk failures happen daily (at scale), fail-fast on those
• Bit-flips (enabled page checksums)

• Drives just disappear

• IOs are misdirected

• Faulty NIC
– Encountered message corruption

• Enabled message signing and checksums

19

Software Deployment

• OS is automatically imaged via deployment

• All the services are setup using file copy
– Guarantees on which version is running

– Provides fast switch to new version

– Minimal global state allows running side by side

– Yes, that includes the SQL Server DB engine

• Rollout is monitored to ensure high availability
– Knowledge of replica state health ensure SLA is met

– Two phase rollouts for data or protocol changes

• Leverages internal Autopilot technologies with SQL
Azure extensions

20

Software Challenges

• Lack of real-time OS features
– CPU priority

• High priority for Fabric lease traffic

– Page Faults/GC
• Locked pages for SQL and Fabric (in managed code)

• Fail fast or not?
– Yes, for corruption/AV

– No, for other issues unless centrally controlled

• What is really considered failed?
– Some failures are non-deterministic or hangs

– Multiple protocols / channels means partial failures too

21

Monitoring

• Health model w/repair actions
– Reboot Re-deploy Re-image (OS) RMA cycle

• Additional monitoring for SQL tier
– Connect / network probes

– Memory leaks / hung worker processes

– Database corruption detection

– Trace and performance stats capture
• Sourced from regular SQL trace and support mechanisms

• Stored locally and pushed to a global cluster wide store

• Global cluster used for service insight and problem
tracking

22

LESSONS LEARNED

23

How is Cloud Different?
Minor differences:

• Cheap hardware
– No SANs, no SCSI, no Infiniband
– Iffy routers, network cards
– Relatively homogeneous
– Hardware not selected for the purpose

• Lots of it
– Not one machine, not 10 machines – think 1000+

• Public internet
– High latencies, sometimes
– All over the world
– Scary people (untrusted) lurking in the shadows

24

How is Cloud Different?

Real differences:

• You are responsible for the whole thing
– No such thing as “can you send us a repro”

– No such thing as “it’s a hardware problem” (it’s us)

– No such thing as “it’s a network issue” (it’s us)

– No such thing as “it’s a configuration issue” (it’s us)

– No such thing as “It’s not us, it’s DNS” (it’s us)

– No such thing as “It’s not us, it’s AD” (it’s us)

• User expectations: it’s a utility!
– Utility of databases, not instances or servers

– Highly available (means “it’s there” not “replication has been enabled”)

– Elastic (you need more, you can have it right away)

– Load-balanced (automatically)

– And yet: symmetric (“give me cursors or give me death”) 25

Design for Failure

• Common mistake #1: Failures can be eliminated
– Everybody fails! Hardware, software, universe

• Common mistake #2: All failures can be detected
– No watchdog is fast enough or good enough

• Common mistake #3: Failures can be enumerated
– Cannot deal with issues one at a time
– Must take a holistic, statistical approach
– Learn only as much as you need to take action

• Common mistake #4: Failures can be dealt with independently
– Local observation generates insufficient insight, leads to global

disasters

26

Design for Failure

27

Observe and
detect

Collect
context

Send
complaints

Aggregate
complaints

Make
decisions

Commit
decisions

Implement
decisions

Local

Centralized

Design for Mediocre

• Network is not fast or slow, it varies
– Design for huge latency variance
– Machine independence is key

• Machines are not up or down, they are kind of slow
– Measure, it’s never black-and-white

• People are not good or fired, they all make mistakes
– Tools and processes to minimize risk

• Environment is often iffy
– Integrated security? Not so fast…

• It’s less important to succeed, than to know the difference

28

Design for (appropriate) Simplicity
• There’s no such thing as a “repro”

– Everything must be debuggable from logs (and dumps)
– This is much harder than it sounds – takes time to log the right stuff

• System state must be externally examinable
– Not locked in internal data structures

• Fail-fast
– Is great! Very hard to reason about partial failures. We kill it fast.
– Is awful! Cascading failures can kill entire system if you are not careful
– Principle: If you are sure it’s local, kill it. If not, not so fast

• ‘No workflows’ is best
– Machine independence is a virtue
– Things that can safely be local, should be

• Single-level workflows is next (reduce number of moving parts)
– Resumable (not tied to a specific machine)
– Design with failure as norm using distributed (persisted) state machines

29

Design for many

• Many machines is great!

– Reduce focus on machine reliability
• By the time RDBMS runs recovery, the world has moved on

– Distribution enables load-balancing
• Focus on elasticity and flexibility

– HA with 100 machines is better than 2
• Load distribution, parallelism of copy

• Many machines is hard!

– Elasticity needs to be built in

– All operations must be multi-machine

– Correlated failures are a fact of life

30

Design for multi-tenancy

• Customers like using many machines

– Enables load-balancing and elasticity

– But they don’t like paying for many machines

• Solution: multi-tenancy!

– Everyone gets many slices

• Hard!

– Isolation for security and performance

– Many small databases? Costs….

– Many relationships (replication)

– Tradeoffs: isolation vs. elasticity?

31

Local vs. Global
Balance between local and global is key!

• “Normal case” decisions must be local
– Any global state (e.g. routes) must be cached
– The fewer parties are involved, the better
– Otherwise: bottlenecks, single points of failure

• “Special case” decisions must be global
– How to react to an error?
– When to failover?
– When and where to balance load?
– When and how to upgrade software?
– Otherwise: instability, chaos, low availability

• Data must be where it is needed
– Global data needed for local operations must be cached locally
– Local data needed for management must be aggregated globally

32

Real Symmetry is End-to-End

• Symmetry is not just about surface area

– Too much focus on features

• It’s not symmetric if:

– If the syntax is the same, but it works in subtly different ways

– If my connection drops too often

– If the latency causes me to put everything in SPs

– If operations unpredictably take 10x as long sometimes

• Customers want clarity, predictability, and minimal
learning curve

33

Summary

• Cloud is different
– Not a different place to host code

• Opportunities are great
– Customers want a utility approach to storage

– New businesses and abilities in scale, availability, etc

• But the price must be paid
– Which is a good thing, otherwise everyone would be

doing it!

34

Future Work and Challenges

• Performance SLAs
– Delivering on “guaranteed capacity” while consolidating diverse

workloads is hard

• Privacy, Governance and Compliance
– Perceptions and realities
– Private Cloud appliances

• Programming Models
– Support for loosely coupled scaleout patterns such as sharding
– Transparent multi-node scaleout

• Data Redundancy
– Point in time restore (backup knobs)
– Geo-availability for multiple points of presence

• Health Model for Applications
– Data tier is only part of the problem – support for hosting N-tier

apps and providing insight into health and performance

35

QUESTIONS?

36

SQL Azure Links

• SQL Azure
http://www.microsoft.com/windowsazure/sqlazure/

• SQL Azure “under the hood”
http://www.microsoftpdc.com/sessions/tags/sqlazure

• SQL Azure Fabric
http://channel9.msdn.com/pdc2008/BB03/

37

http://www.microsoft.com/windowsazure/sqlazure/
http://www.microsoft.com/windowsazure/sqlazure/
http://www.microsoftpdc.com/sessions/tags/sqlazure
http://www.microsoftpdc.com/sessions/tags/sqlazure
http://channel9.msdn.com/pdc2008/BB03/
http://channel9.msdn.com/pdc2008/BB03/

