

Actionable Requirements for Big Science Data Management

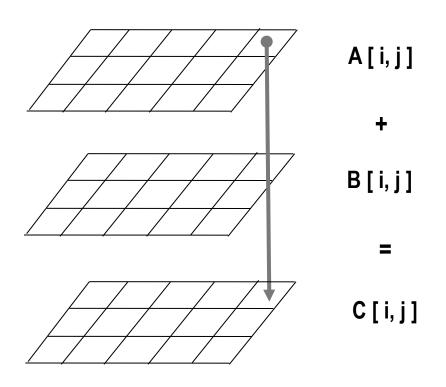
Paul G. Brown U. Wash Summer Institute - 2010 **Zetics** *Big Data. Big Analytics. Big Egos.*

Topics

- Science Use Cases with a Big Data Flavor
- SciDB Architectural Features
- Project Status

Science Groups

- Astronomy 'pointing the camera up' (LSST via. SLAC)
- Remote Sensing 'pointing the camera down'


Technical Lessons

- Arrays as Storage Model
- Extensibility
 - Data Types and Scalar Functions
 - Operators in the Array Algebra

Common Operations

- Images are really 'Arrays' Pixel values are really 'data'
- Super-imposition of 'Images'

Un-common Operations

- Science Data Lots of Numbers
 - Lots of DOUBLE and INT, few DECIMAL
 - Exotics User-Defined Types: COMPLEX, RATIONAL
 - Random Variables N (x, v)
- Missing Information More than NULL
 - Array cells can be 'EMPTY'
 - Array cell values can be 'MISSING', or 'Out of Bounds'
- New Operations
 - Consider : extensible relational operators (beyond Proj, Rest, Join, Union, etc).
 - FFT (input : Array) -> output : Array
 - Feature_Detect (input : Array) -> output : Array < Array >
 - Iterative Methods: do (init(), iter(), until ())

1. Use arrays as the logical building block of the data model.

CREATE ARRAY Observations

- < V: Double > [I=0:3,3,1, J=0:3,3,1];
- 2. Use as a unit of physical storage, and as processing 'chunk'.

	0	1	2	3
0	0.02	0.01	0.01	0.02
1	0.01	0.01	0.5	0.02
2	0.01	0.02	0.01	0.01
3	0.02	0.01	0.02	0.02

1. Use arrays as the logical building block of the data model.

CREATE ARRAY Observations

- < V: Double > [I=0:3,3,1, J=0:3,3,1];
- 2. Use a unit of physical storage, and as processing 'chunk'.

	0	1	2	3
0	0.02	0.01	0.01	0.02
1	0.01	0.01	0.5	0.02
2	0.01	0.02	0.01	0.01
3	0.02	0.01	0.02	0.02

1. Use arrays as the logical building block of the data model.

CREATE ARRAY Observations

< V: Double > [I=0:3,3,1, J=0:3,3,1];

3 2 0 1 0.01 0.02 0 0.02 0.01 0.02 1 0.01 0.01 0.5 2 0.01 0.02 0.01 0.01 0.01 0.02 3 0.02 0.02

2. Use a unit of physical storage, and as processing 'chunk'.

Chunk 3

1. Use arrays as the logical building block of the data model.

CREATE ARRAY Observations

< V: Double > [I=0:3,3,1, J=0:3,3,1];

2 3 0 1 0.01 0.01 0.02 0 0.02 0.01 0.02 0.5 1 0.01 0.01 0.02 0.01 2 0.01 0.01 0.02 0.02 3 0.02

2. Use a unit of physical storage, and as processing 'chunk'.

The 'Provocative Assertions' Slide

- Traditional DBMSs have the wrong data model
 - Tables are impossibly slow at simulating arrays
- SQL has the wrong operations
 - Need to regrid and cluster, not join
 - Need analytical operations like covariance, clustering, et al
- SQL is missing needed features
 - Uncertainty
 - Provenance (lineage)
 - Versions
 - No overwrite

Project Development Status

- Development underway for 2 years
 - Project initially driven by science community
 - Team of 20+ volunteers from academic and science communities
 - Threw away V (0.0 1.0 x i).
- Proof-of-concept demos and projects
 - Public demo at VLDB and XLDB-3 in August '09
 - 3 POC's in quantitative finance, genomic sequencing, sky survey data
- Will be open source core with an enterprise version offering support and additional functionality
 - Open source in order to foster a community of contributors and to insure that data is never "locked up"