
Simplifying Hadoop Usage and

Administration
Or, With Great Power Comes Great

Responsibility in MapReduce Systems

Shivnath Babu

Duke University

New & useful

technology

Time

1975-

1985

1985-

1995

1995-

2005

2005-

2010

2020

Relational DBMS

Features +++++

Open source ++

Manageability Crisis,

Research +++

Claims of self-managing,

Hard to add new features

?

New & useful

technology

Features +++++

Open source ++

MapReduce/Hadoop

?

Different Aspects of Manageability

• Testing

• Tuning

• Diagnosis

• Applying fixes

• Configuring

• Benchmarking

• Capacity planning

• Disaster/failure

recovery automation

• Detection/repair of

data corruption

• User (writes MapReduce

programs, Pig scripts,

HiveQL queries, etc.)

• Developer

• Administrator

Roles (often overlap)

Lifecycle of a MapReduce Job

Map function

Reduce function

Run this program as a

MapReduce job

Map
Wave 1

Reduce
Wave 1

Map
Wave 2

Reduce
Wave 2

Input
Splits

Lifecycle of a MapReduce Job

Time

How are the number of splits, number of map and reduce

tasks, memory allocation to tasks, etc., determined?

Job Configuration Parameters

• 190+ parameters in

Hadoop

• Set manually or defaults

are used

• Are defaults or rules-of-

thumb good enough?

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Experiments

On EC2 and

local clusters

R
u

n
n

in
g

 t
im

e
 (

m
in

u
te

s
)

• Performance at default and rule-of-thumb settings can be poor

• Cross-parameter interactions are significant

Illustrative Result: 50GB Terasort
17-node cluster, 64+32 concurrent map+reduce slots

mapred.reduce.

tasks

io.sort.

factor

io.sort.record.

percent

10 10 0.15

Running

time

10 500 0.15

28 10 0.15

300 10 0.15

300 500 0.15

Based on

popular

rule-of-

thumb

Problem Space

Current approaches:

• Predominantly manual

• Post-mortem analysis

Job configuration

parameters

Declarative HiveQL/Pig

operations

Multi-job

workflows

Performance

objectives

Cost in pay-as-you-go

environment

Energy

considerations

C
o
m

p
le

x
it

y

S
p
ac

e
o
f

ex
ec

u
ti

o
n

ch
o
ic

es

Is this where

we want to be?

Challenges

• Ability to specify

schema late

• Easy integration with

programming lang.

• “Pluggability”

– Input data formats

– Storage engines

– Schedulers

– Instrumentation

• Multiple data formats

• Mix of structured and

unstructured data

• Multiple computational

engines (e.g., R, DBMS)

• Changes/evolution

These features are very

useful when dealing with

Features of Hadoop from

a usability perspective

But, they pose nontrivial

manageability challenges

Some Thoughts on Possible Solutions

• Exploit opportunities to learn

– Schema can be learned from Pig Latin scripts, HiveQL queries,

MapReduce jobs

– Profile-driven optimization from the compiler world

– High ratio of repeated jobs to new jobs is common

• Exploit the MapReduce/Hadoop design

– Common sort-partition-merge skeleton

– Design for robustness gives many mechanisms for adaptation &

observation (speculative execution, storing intermediate data)

– Multiple map waves

– Fine-grained and pluggable scheduler

Some Thoughts on Possible Solutions

• Automate “try-it-out” and “trial-and-error” approaches

– For example, use 5% of cluster resources to run MapReduce

tasks with a different configuration

– Exploit cloud’s pay-as-you-go resources, EC2 spot instances

New & useful

technology

Time

1975-

1985

1985-

1995

1995-

2005

2005-

2010

2020

Relational DBMS

Features +++++

Open source ++

Manageability Crisis,

Research +++

Claims of self-managing,

Hard to add new features

?

New & useful

technology

Features +++++

Open source ++

MapReduce/Hadoop

?

