
UC Berkeley

Outlook for tomorrow:

Cloudy with a chance of PIQLs

Tim Kraska
kraska@cs.berkeley.edu

Storing Data in the Cloud is

GREAT

• The Cloud Computing era promises

– Scalability

– Fault-tolerance

– Pay-as-you-go

• All big players and more and more startups

have Cloud Storage/DB products

Scalability of existing products

Scalability

[SIGMOD09]

Solution: Sharding???

The Success of

Key/Value-Stores

• Simple Query Interface

• Reduced consistency

• Easy to scale (no sharding required)

• Predictable performance

• Easy to price

• High availability (even across data centers)

• Stateless

• Easy to scale

• Requires to re-invent DB functionality

• DB operators (Complex queries are expressed

as imperative programs)

• Consistency

• Physical (hard-coded) schemas

• Service lock-In

Developers find it difficult to write fast/scalable sites using a traditional
RDBMS

- Ex: Many of Twitter's "Fail Whales" caused by unintentionally slow DB queries
[Chirp 2010]

Key/Value Store

App App App App App

A Scalable Architecture

[Building a DB on S3, SCADS]

Key/Value Store

App

DB

App

DB

App

DB

App

DB

App

DB

• Simple Query Interface

• Reduced consistency

• Easy to scale (no sharding required)

• Predictable performance

• Easy to price

• High availability (even across data centers)

• Stateless

• Easy to scale

• DB Library

• Higher declarative language

• Consistency a la Card

• Physical/Logical data independence

• Independent of Key/Value store

Providing a highly scalable DB-Layer on top of the Key/Value store
• Combines database and application Layer

• Scales with the application

• Provides carefully crafted DB-functionality to the developer

A Scalable Architecture

[Building a DB on S3, SCADS]

Key/Value Store

App

DB

App

DB

App

DB

App

DB

App

DB

• Simple Query Interface

• Reduced consistency

• Easy to scale (no sharding required)

• Predictable performance

• Easy to price

• High availability (even across data centers)

• Stateless

• Easy to scale

• DB Library

• Higher declarative language

• Consistency a la Card
• Physical/Logical data independence

• Independent of Key/Value product

Providing a highly scalable DB-Layer on top of the Key/Value store
• Combines database and application Layer

• Scales with the application

• Provides carefully crafted DB-functionality to the developer

Consistency a la Card

Idea: Choose consistency depending on the data requirements

• Logging: Append-Only, no CC needed

• Customer profiles: Single owner, no CC needed

• Product Stock: Commutative updates, CC needed if risking of overselling products

• Ticket Reservation: Commutative updates, CC only needed if close to be sold out

• Bank Transaction: Commutative updates, CC depends on account type

• Access rights at Facebook: Strong CC required, you never want your mother (or your

boss) to see your party pictures

A
m

o
u

n
t

o
f

d
a

ta

Cost of violating consistency

C
B

A

Apply weak consistency

protocols (e.g. session

consistency)

Apply strong

consistency

protocols

(e.g., serializability)

Switches between A and

C guarantees
• Depends on some strategy

• Decision is local per server

PC P(T Y 0)

P
ro

b
a

b
il

it
y

 o
f

In
co

n
si

st
e

n
cy

 P
c

Threshold T
T1 T2

P2

P1

Pc = Likelihood of a conflict

Y = Stochastic variable (e.g.

stock)

T = Threshold (e.g. stock

level)

[Consistency Rationing: VLDB09]

PIQL: Know when to say No

Performance Insightful Query Language
• Scale-independent declarative

language
– Only allows developers to write queries

with a data-size independent upper
bound

– Provides optimization / data
independence

• Performance feedback given to
developer at compile time
– Potentially slow queries are prohibited

RDBMS NoSQL

[PIQL: SOCC09 and SIGMOD09]

Future Directions

• Challenge 1: Architecture and functionality

per layer

• Challenge 2: New/changing workload

patterns

• Challenge 3: Data model and language

support

• …

Challenge 1: Architecture and

functionality per layer

Missing: Reference architecture for Cloud-DB

• What is the right functionality per layer

• How to efficiently push down or up operators between

layers

• Support for multi-data centers

– Increasingly important

– Helps to increase availability and to decrease response time

[Started to explore with Cloudy]

Challenge 2: Workload Patterns

• Many systems today

are over-customized

• More and more highly

specific DB systems are

built (and only half

working)

One size fits not all to

the EXTREME!!!

Service Lock-In

• Workloads change over

time

• Instead of predicting HW

needs, predict usage

needs

• A new system for every

new workload?
• Transaction

• Analytics/ML

• Reports

• Graph Traversal

• …

 New (self-made)

integration problem

Challenge 3: Data Model and

Language Support

• Data model
– Document oriented

– Relational

• Language integration (Linq, Ruby,…)

• How to develop with different consistency

models

The Resurrection of

OODBMS?

– XML

– Objects

SCADS Example

case class Cust(var name:String, var salary:Int, ….) with AvroRecord {…}

val ns = cluster.createTable[IntRec, Cust](”test”))

ns.insert(1, new Cust(“Jim”, 10000,…))

val custs= cluster.get(“test”)

val result = custs.map(a => a.name == “Jim” && a.incrSalary(10) > 100)

Key/Value Store

App

DB

App

DB

App

DB

App

DB

App

DB

[Avro]

Tim Kraska
kraska@cs.berkeley.edu

Questions?

