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The Programming Model

• Provide a sequential, single machine programming 
abstraction

– Same program runs on single-core, multi-core, or 
cluster

• Preserve the existing programming environments

– Modern languages (C# and Java) are very good

• Expressive language and data model

• Strong static typing, GC, generics, …

– Modern IDEs (Visual Studio and Eclipse) are very good

• Great debugging and library support

– Existing code can be easily reused



LINQ

• Microsoft’s Language INtegrated Query
– Available in .NET3.5 and Visual Studio 2008

• A set of operators to manipulate datasets in .NET
– Support traditional relational operators

• Select, Join, GroupBy, Aggregate, etc.

– Integrated into .NET programming languages
• Programs can invoke operators

• Operators can invoke arbitrary .NET functions

• Data model
– Data elements are strongly typed .NET objects

– Much more expressive than relational tables
• For example, nested data structures
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K-means in DryadLINQ

public static Vector NearestCenter(Vector v, IEnumerable<Vector> centers) {
return centers.Aggregate((r, c) => (r - v).Norm2() < (c - v).Norm2() ? r : c);

}

public static IQueryable<Vector> Step(IQueryable<Vector> vectors, IQueryable<Vector> centers) {
return vectors.GroupBy(v => NearestCenter(v, centers))

.Select(group => group.Aggregate((x,y) => x + y) / group.Count());
}

var vectors = PartitionedTable.Get<Vector>("dfs://vectors.pt");
var centers = vectors.Take(100);
for (int i = 0; i < 10; i++) {

centers = Step(vectors, centers);
}
centers.ToPartitionedTable<Vector>(“dfs://centers.pt”);

public class Vector {
public double[] elems;

[Associative]
public static Vector operator +(Vector v1, Vector v2) {  … }

public static Vector operator -(Vector v1, Vector v2) { … }

public double Norm2() { …}

}



Dryad Execution Graph
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Availability

• Freely available for academic use and commercial 
evaluation
– http://connect.microsoft.com/DryadLINQ

– Only a subset of the stack

• Productization of the stack is under way

– Transferred to our technical computing team

– CTP by this November

– RTM in 2011 running on top of HPC

http://connect.microsoft.com/DryadLINQ


Research Papers

1. Dryad: Distributed Data-Parallel Programs from 
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Language Integration Is Good

• Preserve an existing programming environment
– Single unified data model and programming language

– Direct access to IDE and libraries

– Familiar to the developers

• Simpler than SQL programming
– As easy for simple queries

– Easier to use for even moderately complex queries
• No embedded languages

• FlumeJava (Google) and Spark (Berkeley) 
followed with the same approach



LINQ Framework Is Good
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Decoupling of Dryad and DryadLINQ

• Separation of concerns

– Dryad layer concerns scheduling and fault-tolerance 

– DryadLINQ layer concerns the programming model 
and the parallelization of programs

– Result: efficient and expressive execution engine and 
programming model 

• Different from the MapReduce/Hadoop approach

– A single abstraction for both programming model and 
execution engine

– Result: very simple, but very restricted execution 
engine and language



Cluster Resources Are Poorly Managed

• A large fraction of computations are 
redundant

• A lot of datasets are either obsolete or 
seldom used



Computation

PROBLEM: Redundant Computation
– Programs share sub-computations

– Programs share partial input datasets

SOLUTION: Caching
– Cache the results of popular sub-computations 

– Rewrite user programs to use cache

X.Select(F)
X.Select(F).Where(…)

X.Select(F)
(X+X’).Select(F)

1 2 3 4 5 6 7

2 3 4 5 6 7 8



Storage

PROBLEM: Unused data occupying space

SOLUTION: Automatically manage derived datasets

– Divide data into primary and derived

• Primary: Imported from external sources

• Derived: Generated by computations

– Delete the derived datasets of the least value

– Recreate a deleted dataset by re-execution

• Keep the programs of the derived datasets

• Rerun its program if a dataset is needed after deletion



Program Analysis Is Lacking

• The main sources of difficulty
– Complicated data model

– User-defined functions all over the places

• Areas heavily depend on program analysis
– Many query optimizations

– Computation caching

– Purity checking

– Enforcement of program properties for security and 
privacy mechanisms

– Debugging and verification

– ……
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System Components

• Program rewriter
– Rewrite programs to use cache

• Static program dependency analyzer
– Used to compute a unique fingerprint of a program

• Datacenter-wide cache server
– Cache popular computations
– Track usage/cost of cache entries (and hence deriveds)

• Datacenter-wide garbage collector
– Garbage collect deriveds based on usage/cost

• Program store
– Store programs so that deriveds can be reproduced


