
A Software Stack for Distributed
Data-Parallel Computing

Yuan Yu

Microsoft Research Silicon Valley

The Programming Model

• Provide a sequential, single machine programming
abstraction

– Same program runs on single-core, multi-core, or
cluster

• Preserve the existing programming environments

– Modern languages (C# and Java) are very good

• Expressive language and data model

• Strong static typing, GC, generics, …

– Modern IDEs (Visual Studio and Eclipse) are very good

• Great debugging and library support

– Existing code can be easily reused

LINQ

• Microsoft’s Language INtegrated Query
– Available in .NET3.5 and Visual Studio 2008

• A set of operators to manipulate datasets in .NET
– Support traditional relational operators

• Select, Join, GroupBy, Aggregate, etc.

– Integrated into .NET programming languages
• Programs can invoke operators

• Operators can invoke arbitrary .NET functions

• Data model
– Data elements are strongly typed .NET objects

– Much more expressive than relational tables
• For example, nested data structures

Image
Processing

Software Stack

Windows
Server

Cluster Services (Azure, HPC)

Execution engine (Dryad)

Programming model (DryadLINQ)

Windows
Server

Windows
Server

Windows
Server

Data management: DFS (Azure, TidyFS), Nectar

Machine
Learning

Graph
Analysis

Data
Mining

Applications

…… eScience

Scheduler
(Quincy)

K-means in DryadLINQ

public static Vector NearestCenter(Vector v, IEnumerable<Vector> centers) {
return centers.Aggregate((r, c) => (r - v).Norm2() < (c - v).Norm2() ? r : c);

}

public static IQueryable<Vector> Step(IQueryable<Vector> vectors, IQueryable<Vector> centers) {
return vectors.GroupBy(v => NearestCenter(v, centers))

.Select(group => group.Aggregate((x,y) => x + y) / group.Count());
}

var vectors = PartitionedTable.Get<Vector>("dfs://vectors.pt");
var centers = vectors.Take(100);
for (int i = 0; i < 10; i++) {

centers = Step(vectors, centers);
}
centers.ToPartitionedTable<Vector>(“dfs://centers.pt”);

public class Vector {
public double[] elems;

[Associative]
public static Vector operator +(Vector v1, Vector v2) { … }

public static Vector operator -(Vector v1, Vector v2) { … }

public double Norm2() { …}

}

Dryad Execution Graph

C0 ac

P1

P2

P3

ac

ac

cc C1

ac

ac

ac

cc C2

ac

ac

ac

cc C3

Availability

• Freely available for academic use and commercial
evaluation
– http://connect.microsoft.com/DryadLINQ

– Only a subset of the stack

• Productization of the stack is under way

– Transferred to our technical computing team

– CTP by this November

– RTM in 2011 running on top of HPC

http://connect.microsoft.com/DryadLINQ

Research Papers

1. Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks (EuroSys’07)

2. DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language
(OSDI’08)

3. Quincy: Fair scheduling for distributed computing
clusters (SOSP’09)

4. Distributed Aggregation for Data-Parallel Computing:
Interfaces and Implementations (SOSP’09)

5. Nectar: Automatic Management of Data and
Computation in Data Centers (OSDI’10)

http://research.microsoft.com/users/mbudiu/eurosys07.pdf
http://research.microsoft.com/users/mbudiu/eurosys07.pdf
http://research.microsoft.com/users/mbudiu/eurosys07.pdf
http://research.microsoft.com/users/mbudiu/eurosys07.pdf
http://research.microsoft.com/users/mbudiu/DryadLINQ.pdf
http://research.microsoft.com/users/mbudiu/DryadLINQ.pdf
http://research.microsoft.com/users/mbudiu/DryadLINQ.pdf
http://research.microsoft.com/users/mbudiu/DryadLINQ.pdf
http://research.microsoft.com/users/mbudiu/DryadLINQ.pdf
http://research.microsoft.com/users/mbudiu/DryadLINQ.pdf
http://research.microsoft.com/users/mbudiu/DryadLINQ.pdf
http://research.microsoft.com/users/mbudiu/DryadLINQ.pdf
ds.pdf
ds.pdf
DryadLinq-sosp.pdf
DryadLinq-sosp.pdf
DryadLinq-sosp.pdf
DryadLinq-sosp.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=131525
http://research.microsoft.com/apps/pubs/default.aspx?id=131525
http://research.microsoft.com/apps/pubs/default.aspx?id=131525
http://research.microsoft.com/apps/pubs/default.aspx?id=131525

Language Integration Is Good

• Preserve an existing programming environment
– Single unified data model and programming language

– Direct access to IDE and libraries

– Familiar to the developers

• Simpler than SQL programming
– As easy for simple queries

– Easier to use for even moderately complex queries
• No embedded languages

• FlumeJava (Google) and Spark (Berkeley)
followed with the same approach

LINQ Framework Is Good

PLINQ

Local machine

.Net
program
(C#, VB,
F#, etc)

Execution engines

Query

Objects

LINQ-to-SQL

DryadLINQ

LINQ-to-Obj

LI
N

Q
 p

ro
vi

d
er

 in
te

rf
ac

e

Scalability

Single-core

Multi-core

Cluster

Decoupling of Dryad and DryadLINQ

• Separation of concerns

– Dryad layer concerns scheduling and fault-tolerance

– DryadLINQ layer concerns the programming model
and the parallelization of programs

– Result: efficient and expressive execution engine and
programming model

• Different from the MapReduce/Hadoop approach

– A single abstraction for both programming model and
execution engine

– Result: very simple, but very restricted execution
engine and language

Cluster Resources Are Poorly Managed

• A large fraction of computations are
redundant

• A lot of datasets are either obsolete or
seldom used

Computation

PROBLEM: Redundant Computation
– Programs share sub-computations

– Programs share partial input datasets

SOLUTION: Caching
– Cache the results of popular sub-computations

– Rewrite user programs to use cache

X.Select(F)
X.Select(F).Where(…)

X.Select(F)
(X+X’).Select(F)

1 2 3 4 5 6 7

2 3 4 5 6 7 8

Storage

PROBLEM: Unused data occupying space

SOLUTION: Automatically manage derived datasets

– Divide data into primary and derived

• Primary: Imported from external sources

• Derived: Generated by computations

– Delete the derived datasets of the least value

– Recreate a deleted dataset by re-execution

• Keep the programs of the derived datasets

• Rerun its program if a dataset is needed after deletion

Program Analysis Is Lacking

• The main sources of difficulty
– Complicated data model

– User-defined functions all over the places

• Areas heavily depend on program analysis
– Many query optimizations

– Computation caching

– Purity checking

– Enforcement of program properties for security and
privacy mechanisms

– Debugging and verification

– ……

Nectar

Nectar Cluster-Wide Services

Program Rewriter

Nectar Client-Side Library

Cache Server

Garbage Collector

DryadLINQ/Dryad

Distributed FS

DryadLINQ Program

P

P’

Nectar Data StoreNectar Program Store

Lookup

Hits

System Components

• Program rewriter
– Rewrite programs to use cache

• Static program dependency analyzer
– Used to compute a unique fingerprint of a program

• Datacenter-wide cache server
– Cache popular computations
– Track usage/cost of cache entries (and hence deriveds)

• Datacenter-wide garbage collector
– Garbage collect deriveds based on usage/cost

• Program store
– Store programs so that deriveds can be reproduced

