Windows 10

Windows IoT

Thomas Pfenning
8/1/2017
IoT Market: Three Classes of Devices

<table>
<thead>
<tr>
<th></th>
<th>PC-Like Embedded Devices</th>
<th>Smart Things</th>
<th>Things</th>
</tr>
</thead>
<tbody>
<tr>
<td>~100 million units</td>
<td>Intel Core</td>
<td>ARM Cortex-A7, Intel Atom</td>
<td>MCU</td>
</tr>
<tr>
<td>ATM, Retail Point of Service</td>
<td>$100+</td>
<td>$5-50</td>
<td>$0.50-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~800 million units</td>
<td></td>
<td>QNX, Wind River, Android Things</td>
<td>FreeRTOS</td>
</tr>
<tr>
<td>PLC, Edge Gateway, Thermostat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~9 billion units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp Sensor, Lightbulb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical Silicon BOM
- Intel Core: $100+
- ARM Cortex-A7, Intel Atom: $5-50
- MCU: $0.50-5

Typical OS
- Windows Embedded, Linux
- QNX, Wind River, Android Things
- FreeRTOS

Typical Runtime
- Win32
- Node.js, Python, C APIs
- C APIs

MSFT Offering Cost
- Windows IoT Enterprise: $30-120 + Services
- Windows IoT Core: $0 + Services

Smart Things Trends
1. Fragmented silicon market in Smart Things, fuzzy line between Smart Things and PC-Like Embedded
2. Partners are still specialists per sub-vertical, but are selling more end-to-end solutions including services
3. OS volume shifted from pay RTOS to Linux and Android
4. Data processing moving to edge: compute power, lower bandwidth and latency
Windows 10 IoT Editions

Windows 10 IoT Enterprise
2GB RAM, 16 GB Storage | X86/X64

Windows 10 IoT Mobile
1 GB RAM, 4 GB Storage | ARM

Windows 10 IoT Core
256MB RAM, 2GB Storage | X86/X64 or ARM

Secure and Manageable Platform

Powerful Industry Devices
Rich user experience
Lockdown and multi user support
Windows 32 and UWP apps

Ruggedized Handheld Devices
Modern Shell and UWP apps
Lockdown and role support
ARM support

Small and low-cost Smart Things
Single purpose device experience
UWP apps
Low-cost silicon
GETTING THE BEST OF BOTH WORLDS

Secure systems and peace of mind

Benefits of cloud connected solutions
IoT End-to-End Security Offering & Investment Opportunity

Core HW & Platform
- Malware resistance w/ SecureBoot*
- Securing keys in the TPM*
- Information protection for data at rest with BitLocker*
- Execution control via DeviceGuard*
- Security updates via WU*
- Malware protection with Windows Defender AV

Trusted Execution Control
- Secure point-to-point communication from cloud to IO pin
- Securing IO operations through policy-based execution on cyber physical systems (CPS)
- Non-repudiated auditing for tamperproof logging

Health Attestation
- Security related data points validated by Remote Health Attestation Service
- Measured boot data, protected by the TPM, sent to service for verification
- Conditional Access to sensitive assets based on a health assessment of the device

Windows Defender ATP
- Advanced Threat Protection with cloud-powered, behavioral-based, post-breach detection
- Anomaly detection, combined with Microsoft threat intelligence knowledge base
- Forensic investigation and mitigation capabilities

Portals and DM
- Portal with a view to threats identified within the network, including deep analytics, historical data points and the ability to respond to threats
- Remediate the affected device via DM (e.g. flash the device)

* Feature currently supported on IoT Core RS2
Consistent Device Management Capabilities
for all Windows 10 IoT devices

Windows 10 IoT

Industry Devices
Mobile Devices
Small Devices

One Windows Platform
• Converged MDM Stack
• Converged Servicing Stack
• Common CSPs

A CSP
B CSP
C CSP
D CSP

OMA
DM

Windows Intune
3rd Party MDM

DT
Easier to manage devices at scale

- Securely authenticate devices, on-board for management and provision for service.
- Group devices and control access according to your organization's needs.
- Monitor device inventory, health & security while providing proactive remediation of issues.
- Replace or decommission devices after failure, upgrade cycle or service lifetime.
- Provide updates, configuration & applications to assign the purpose of each device.
Led by Automotive, there is a growing push to improve semiconductors for advanced analytics at the edge and the cloud.

Smart gateways can act as a hub to ensure that data is analyzed in the optimal location, whether that is the cloud or the edge.

Efficient coprocessors allow for the processing acceleration needed to create edge and gateway devices that understand and learn from their environment.

IDC estimates that 1% of devices sit in the “cloud” while the remainder sit at “edge” or “fog.”

Demand for edge analytics driven by security, reliability, and efficiency.
SoC dynamics have resulted in complex clusters of large and small APUs, accelerators, dedicated function cores.

Constant flow of additional silicon to handle market demand for machine vision, AI, AR/VR, software defined radio, spatial audio, ...

Qualcomm – CPU, GPU, DSP, ISP, Neural Processor

Intel – CPU, GPU, Sensor Hub, Pattern Matcher, Vision Processor (Movidius), FPGA (Altera)

Other ARM SVs – RT (MCU) cores, GPU, DSP, ...
Innovation Spotlight Topic:
Semiconductor Innovations Enabling Analytics at the Edge through coprocessors

- Nvidia Jetson SoC for embedded AI
- ARM based CPU handles majority of code
- GPU handles compute intensive deep learning algorithms
- Processor designed specifically for vision processing
- Framework to transfer deep learning trained on servers to edge devices
- IP designed for easy customization to specific workloads
- Lattice ICE40 FPGA
 - reprogrammable for specific algorithms
- Tensilica Customizable Processor IP
- Movidius Myriad 2 VPU
 - Processor designed specifically for vision processing
 - Framework to transfer deep learning trained on servers to edge devices
Traditional factories have been constrained by siloed legacy platforms and a lack of interoperability. As smart connected devices enter the factory setting, the need for a unified, scalable industrial communications standard for reliability and manageability has grown stronger.

OPC-UA is the unified communications standard designed specifically for connecting industrial IoT devices – from basic “things” like attenuators and sensors to smart devices like industrial PCs, industrial IoT gateways, robotic arms, and Programmable Logic Controllers (PLCs) to servers and mainframes.
The rapid proliferation of IoT devices has resulted in many different communications standards and a fragmented IoT device landscape with limited interoperability. Connecting these devices to one another securely becomes more important every day.

OCF solves the problem of interoperability in consumer IoT devices by providing a common communications framework, allowing a broad range of devices to communicate and interoperate securely.