Trusted Cyber Physical Systems (TCPS)

Dave Thaler, Partner Software Engineer

August 2017
Trusted Cyber Physical System: The Problem

Problem

- Attacks against safety critical systems can have devastating consequences
- Need proof of correct operation for regulatory, insurance, etc. reasons

Besides the usual threats, additional threats that must be addressed include:

- Malware might has compromised a normally-trusted device
- Rogue administrator with access to the hosting system, but without operating rights
- State actors might have injected vulnerabilities or do surveillance via software vendors, hardware vendors, cloud hosters, etc. in their jurisdiction
Strong security promises needed

- **Tamperproof authorization and non-repudiated auditing to control and monitor actions**
 - No one (including malware) can execute actions except as authorized by the owner.

- **Data flow and storage throughout the infrastructure is encrypted and integrity protected, only giving entities authorized by the owner access**
 - No one (including malware) can decrypt, alter or replay security-sensitive data without the owner’s explicit permission.
 - If a cloud hoster is given a subpoena, FISA order, etc., it cannot give out highly-secure data since all it gets is a random-looking set of bits.

- **Use of well proven industry standards provides transparency and trust in all security-related operations throughout the system**
 - Code in the trusted computing base is vettable by a customer (or their security service).
Trusted Execution Environment (TEE) at each endpoint

I/O to and from non-TEEs is accessible **ONLY** to a TEE
Trusted Execution Environments

• A TEE provides hardware-enforcement that
 1. the device has a unique security identity
 2. any code inside the TEE is operator-authorized code
 3. any data inside the TEE cannot be read by code outside the TEE
 4. any trusted peripherals/busses cannot be accessed by code outside the TEE

• Already widely deployed in the payment industry (e.g., chip-and-pin cards)
• Already adopted in some standards bodies (GlobalPlatform, OneM2M, etc.)
Communication stack threat

Any section of the communication stack which handles decrypted data provides an **attack surface for Malware**

Moving the communication stack layers which handle unencrypted data into an **Trusted Execution Environment (TEE)** mitigate the **attack surface** significantly
How can I trust code?

• The code is running on hardware you trust
• Any trusted roots used by the TEE code are chosen by the owner
• The source code for TEE code is available and small enough for a security lab to evaluate and certify.
 • This is to mitigate attacks where the code contains a back door.
• The toolchain used to produce or verify the TEE code is available and small enough for a security lab to evaluate and certify.
 • This is to mitigate attacks where the compiler inserts back doors.