Safely and Efficiently Programming a 64kB Computer

Amit Levya, Branden Ghenb, Bradford Campbellb, Pat Pannutob, Prabal Duttab, Philip Levisa

MSR UW Summer Institute
August 2, 2017
aStanford University bUniversity of Michigan
Securing the Internet of Things

- Secure Internet of Things Project
 - 5 year project (just started second year)
 - 12 faculty collaborators
 - 3 universities: Stanford, Berkeley, and Michigan
- Rethink IoT systems, software, and applications from the ground up
- Make a secure IoT application as easy as a modern web application
There’s no such thing as a secure embedded OS today.
There’s no such thing as a secure embedded OS today.

Let’s research why and write one.
Embedded Systems

“An embedded system is a computerized system that is purpose-built for its application.”

Elicia White
Making Embedded Systems, O’Reilly
But the World is Changing…

“An embedded system is a computerized system that is purpose-built for its application.”

Elicia White
Making Embedded Systems, O’Reilly
But the World is Changing…

“An embedded system is a computerized system that is purpose-built for its application.”

Elicia White
Making Embedded Systems, O’Reilly
But the World is Changing…

“An embedded system is a computerized system that is purpose-built for its application.”

Elicia White
Making Embedded Systems, O’Reilly

A new class of embedded devices, that act as platforms supporting loadable programs within a particular application domain.
Tock Operating System

- Safe, multi-tasking operating system for memory-constrained devices
- Core kernel written in Rust, a safe systems language
 - Small amount of trusted code (can do unsafe things)
 - Rust bindings for memory-mapped I/O
 - Core scheduler, context switches
- Core kernel can be extended with capsules
 - Safe, written in Rust
 - Run inside kernel
- Processes can be written in any language (asm, C)
 - Leverage Cortex-M memory protection unit (MPU)
 - User-level, traps to kernel with system calls
Tock Architecture

Process (Any language)
- heap
- stack
- data
- text

Kernel (Rust)
- SPI
- I2C
- UART
- Console
- GPIO
- Timer

Core kernel (Trusted)
- HAL
- Scheduler
- Config

Capsules (Untrusted)
- Process Accessible Memory
- RAM
- Flash

Heap
- Text
- Stack
- Data
- Grant
Challenge: System Calls

- System calls need to dynamically allocate memory
 - Create a timer, kernel needs to keep timer’s state
 - Enqueue a packet to send, kernel needs reference to packet
- For dependability, kernel has no heap
 - Otherwise a process can exhaust kernel memory
 - Fragmentation
 - Cleaning up after process failures
- How does the kernel handle system calls if it has no heap?
System Call Insight

- Processes given block of memory
- Dynamically allocated when process loaded
- Kernel can allocate memory from process

Processes (Any language)

Kernel (Rust)

Capsules (Untrusted)

Core kernel (Trusted)
Memory Grants

- Each process has a growable container of *grant memory*
- Kernel can allocate objects from the grant block
- References to objects cannot escape the block
 - Process failure/crash does not lead to dangling pointers
- Users pass a function to the container with `enter`

self.apps.enter(appid, |app, _| {
 app.read_buffer = Some(slice);
 app.read_idx = 0;
 0
}).unwrap_or(-1)
Programs to the Edge

- Firmware
- WWW
- lua
- python
- C

Application programming model
Application-to-application authentication
Network security policies
20-year cryptography/software update
Tock Operating System

- Safe, multi-tasking operating system for memory-constrained devices
- Core kernel written in Rust, a safe systems language
 - Small amount of trusted code (can do unsafe things)
 - Rust bindings for memory-mapped I/O
 - Core scheduler, context switches
- Many new system design and research challenges
 - Writing a kernel in a type safe, not garbage collected language
 - Memory isolation and allocation
- Come learn how to use it!
Thanks!

https://www.tockos.org/
Amit Levy <levya@cs.stanford.edu>

↑ Amit will be on the job market this year - help me make him smile!