**Capstone Design Experiences**

Born from ABET requirements for open-ended group projects to “cap” traditional computer engineering curricula, capstone design courses have spread across computer science and computer engineering curricula and offer many distinct advantages to both students and faculty.

For students, the main goals are to connect and synthesize the many topics covered in more traditional courses through an experience that comes close to what students will face in employment and/or graduate school, namely, working on a team (often inter-disciplinary) to develop a project concept, determine a plan of attack to deal with unknowns and possible contingencies, work with “customers” to refine requirements, and implement a working prototype that can be used to evaluate the idea. Students can also use these capstone experiences to “specialize” their degree. For faculty and their departments, capstone design courses provide a way to drive pedagogical innovation and modern topics into the curriculum and to integrate teaching and research activities more closely.

The University of Washington’s Department of Computer Science & Engineering has a particularly rich set of capstone design courses, which has been steadily expanded over the years to expose students to the ever-widening variety of careers offered by the field as well to demonstrate the societal relevance of technology. Current examples include:

<table>
<thead>
<tr>
<th>University of Washington Capstone Design Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hardware design and embedded systems</strong></td>
</tr>
<tr>
<td><strong>Video games</strong></td>
</tr>
<tr>
<td><strong>Digital animation</strong></td>
</tr>
<tr>
<td><strong>Computational biology</strong></td>
</tr>
<tr>
<td><strong>Accessibility</strong></td>
</tr>
<tr>
<td><strong>Urban simulation</strong></td>
</tr>
<tr>
<td><strong>Information and communication technology for developing regions</strong></td>
</tr>
<tr>
<td><strong>Advanced Internet systems</strong></td>
</tr>
</tbody>
</table>
Scalable systems: design, implementation, and use of large-scale clusters

This course began as a collaboration with Google in 2006. A recent project helped a student become a key member of the small team that developed the Google Maps bicycle route mapping feature.

Other current UW CSE capstone design course offerings include …

Robotics, operating systems, distributed computing, tablet computing.

Students take one or more of these capstone design courses, in the junior or senior year. For students, the benefits include synthesis, realism, and deep specialization. For the program as a whole, the benefits include:

- **Experimentation** for later inserting technology elements into traditional courses. For example, the sensing devices prototyped in the embedded systems capstone led to a new embedded systems course based on wireless sensor nodes.

- Multi-quarter multi-disciplinary **design experiences** that give students more time to explore a design space. The capstone format allows for this much more easily than the traditional curriculum.

- Easier **connections between faculty members’ research and their teaching**. The more substantial nature of capstone projects has led to many publications in workshop and conference venues and allows undergraduates to team up with graduate students on projects that feed into a research program.

- Technology collaborations leading to **stronger ties with industry**. The scalable systems capstone led, in part, to the establishment of the Google/IBM Academic Data Center and the NSF CluE (Cluster Exploratory) programs. Embedded systems capstones helped make UW an attractive location for one of Intel’s university research laboratories.

- End-of-course **videos capturing what students actually are able to accomplish** as a result of the program. These videos have been used at graduation ceremonies to inform parents, at recruiting events to inform prospective students about the many directions their careers can follow, and at CSE community conferences publicize our curricular innovations.

- Expanded **media coverage** for CSE activities by making them more accessible to a wider audience through much more user-oriented and substantial projects with interesting human-interest stories focused on students. This exposure helps immensely with recruiting and with the image of the field.

**Common Themes and Methods**

The common themes and methods that emerge in these courses are:

- **Integrate** - a team design experience makes concrete the foundational concepts introduced in related courses.

- Build on **student-accumulated knowledge and experience** to permit greater choice in the formulation of individual projects, even if they remain constrained in theme (e.g., a game, a race car, a networked appliance) or choice of implementation approach (software-only, embedded system, etc.).

- Introduce **human-centric design experiences** through projects that involve human-directed inputs based on system communicated outputs. Encourage the development of communication skills through frequent design presentations, project write-ups, and engagement within the project team and with external “customers.”
• Introduce **constrained design** by imposing user requirements and limitations to the implementation approach on the projects. Evaluate projects not simply on functionality (e.g., meeting functional requirements), but also on performance, cost/performance, and elegance (e.g., fewest components, lines of code, etc.).

• Use **cooperation** (e.g., sharing tools and libraries) and competition (e.g., bragging rights) where appropriate to undertake larger design or to motivate students.

• Re-conceptualize curriculum around the **project focus** to introduce materials “just in time” to be useful in project design and implementation.

**Artifacts**

Pointers to sample videos, press coverage, and papers that have resulted from our capstone courses are provided below:

• Videos of all of many of our capstone courses:  [http://www.cse.washington.edu/info/videos/](http://www.cse.washington.edu/info/videos/)


• Scalable Systems course chronicled in *Business Week*: [http://www.businessweek.com/magazine/content/07_52/b4064048925836.htm](http://www.businessweek.com/magazine/content/07_52/b4064048925836.htm)

• Animation capstone films have been shown at international, national, and local film festivals including two accepted to the upcoming Seattle International Film Festival in May 2010 and another being presented the Smithsonian’s National Museum of American Art.

• Computational Biology projects presented as papers and software:
  


• Development of a new mobile data collection tool, Open Data Kit ([http://www.opendatakit.org](http://www.opendatakit.org)) for smart phones began in our ICTD capstone course.

• Personal health tools and ubiquitous computing have been a common theme in our embedded systems capstones including the following papers:


Links to UW CSE capstone courses can be found at: [http://www.cse.washington.edu](http://www.cse.washington.edu).