Biology is fast becoming an information science, with large databases and sophisticated algorithms now essential tools in the field. Allen School faculty and students collaborate with researchers in biology and medicine on a wide range of computational problems that will ultimately enable us to understand and augment complex biological systems. The Allen School and the University of Washington are at the forefront of exciting innovations at the intersection of computation and biology to advance scientific discovery, develop new diagnostics and therapeutics, and usher in a new era of personalized medicine. Learn more about our work by visiting the pages of our individual researchers and labs and explore some of our highlighted projects below.
Also check out our work in Molecular Programming & Synthetic Biology.
Center for Neurotechnology
The Center for Neurotechnology focuses on the development of innovative neural devices and methods for engineering neuroplasticity in the brain and spinal cord. The goal is to revolutionize the treatment of people living with spinal cord injury, stroke and other debilitating neurological conditions by engineering devices that restore lost or injured connections in parts of the nervous system to improve, assist, and restore sensory and motor function. The center also focuses on the discovery of fundamental neuroscience an engineering principles with broader implications for the treatment of neurological diseases such as Parkinson's and essential tremor.
AI for bioMedical Sciences (AIMS) Lab
Members of the AIMS Lab develop explainable artificial intelligence for applications in health care and the life sciences. Working in partnership with biomedical researchers and clinicians in the UW School of Medicine and external institutions, the team aims to improve our understanding of the biology underlying diseases such as cancer and Alzheimer's; enable physicians to target disease treatments based on a patient's individual molecular profile; and to provide useful, interpretable predictions for a range of conditions and risk factors to improve patient outcomes.
Neural Systems Laboratory
The Neural Systems Laboratory aims to advance our understanding of the brain using computational models and simulations, and apply this knowledge to the task of building intelligent robotic systems and brain-computer interfaces (BCIs). The lab's work combines data and techniques from a variety of fields, ranging from neuroscience and psychology, to machine learning and statistics. Members are focused on understanding probabilistic information processing and learning in the brain; building biologically-inspired robots that can learn through experience and imitation; and developing interfaces for controlling computers and robots using brain- and muscle-related signals.
News & Highlights
- TreeExplainer, a set of tools for computing optimal local explanations for tree-based machine learning models used to predict mortality and disease risk, is featured on the cover of Nature Machine Intelligence. A team of researchers in the AIMS Lab led by recent Ph.D. alumnus Scott Lundberg and professor Su-In Lee worked with collaborators in UW Medicine on the project.
- A team led by professor Rajesh Rao published the results of a study that employs computational methods to explain human choices in group decision-making in Science Advances.
- The EMBARKER project led by professor Su-In Lee and Ph.D. student Safiye Celik that focuses on the identification of genetic markers of Alzheimer's disease wins the 2019 Madrona Prize.
- The Prescience interpretable machine-learning system for predicting hypoxemia during surgery, led by professor Su-In Lee and Ph.D. student Scott Lundberg, appears on the cover of Nature Biomedical Engineering.
- MERGE algorithm developed by a team of researchers and clinicians led by Professor Su-In Lee and Ph.D. student Safiye Celik that combines machine learning and big data to target treatment for acute myeloid leukemia is published in Nature Communications.
- Professor Larry Ruzzo co-edited and appeared in the book RNA Sequence, Structure, Function: Computational and Bioinformatic Methods, presenting new methodologies in RNA bioinformatics.