
CONVEX OPTIMIZATION

JOHN THICKSTUN

projected subgradient descent

Let f ∈ X ⊂ Rn → R with X compact (ML literature uses d instead of n). If f is convex
(=⇒ X convex) then there is some global minimizer x∗ with f(x∗) ≤ f(x) for all x ∈ X .
If differentiable then ∇f(x∗) = 0.

How do we find x∗? Minimize a linearization of f (i.e. first order; i.e. gradient descent):

xt+1 ≡ xt − η∇f(xt).

How to set η? Too large and linear approximation is bad. Too small, slow progress.
Where to start? Any x1 ∈ X . In general it might be hard to find a feasible x1 ∈ X .
What if xt+1 /∈ X ? Replace it with

ΠX (x) ≡ arg min
y∈X

‖x− y‖.

What if f isn’t differentiable? Use a subgradient.
Recall the first order convexity lower bound: f(x)− f(y) ≤ ∇f(x)T (x− y) (picture).

Definition. (Subgradients) Let f : X ⊂ Rn → R. Then g ∈ ∂f(x) ⊂ Rn iff for all y ∈ X ,

f(x)− f(y) ≤ gT (x− y).

Proposition. Let X ⊂ Rn be convex, f : X → R; f is convex iff ∂f(x) 6= ∅,∀x ∈ intX .

Proof. See Proposition 1.1 in Bubeck. �

For insight, try proving the proposition if f is differentiable.

Projected subgradient descent:

yt+1 ≡ xt − ηgt, where gt ∈ ∂f(xt),

xt+1 ≡ ΠX (yt+1) .

Definition. A function f : X ⊂ (Rn, ‖ · ‖)→ R is L-Lipschitz iff |f(x)− f(y)| ≤ L‖x− y‖
for all x, y ∈ X .

Exercise 1: Let f : X ⊂ (Rn, ‖ · ‖) → R be convex. Show that f is L-Lipschitz iff for
all x ∈ X and g ∈ ∂f(x), ‖g‖∗ ≤ L.

Exercise 2: Suppose f : X ⊂ (Rn, ‖ · ‖2) → R is convex and X is compact. Show that
f is Lipschitz or give a counterexample.

1

2 JOHN THICKSTUN

How fast do we get to x∗? It depends on the learning rate. Try a constant rate. This
will cause variance issues near opt (picture) so let’s average our iterates.

Theorem. Let f : X ⊂ Rn → R be convex and L-Lipschitz with diameter of X bounded by
R. The projected subgradient method with η = R

L
√
t

satisfies

f

(
1

t

t∑
s=1

xs

)
− f(x∗) ≤ RL√

t
= O

(
1√
t

)
.

• This is optimal (section 3.5 of Bubeck) given only first-order information of f
(delayed averaging, non-constant lr, anything else can’t help).
• Subgradients and projections could be expensive; this analysis ignores that.
• Let ε > 0, we achieve ε accuracy in O(1/ε2) iterations (bad!).
• This accuracy is independent of the dimension n (good!).
• Learning rate depends on t (weird); same rate up to factor log t with rate R

L
√
s
.

• If exercise 2 is true, then the hypotheses of the theorem are satisfied if X is compact.

Proof. By convexity of f ,

f

(
1

t

t∑
s=1

xs

)
− f(x∗) ≤ 1

t

t∑
s=1

f(xs)− f(x∗) =
1

t

t∑
s=1

(f(xs)− f(x∗)).

The distance of an iterate to opt is given by

f(xs)− f(x∗) ≤ gTs (xs − x∗) (definition of a subgradient)

=
1

η
(xs − ys+1)

T (xs − x∗) (definition of gs)

=
1

2η

(
‖xs − ys+1‖2 + ‖xs − x∗‖2 − ‖ys+t − x∗‖2

)
(2aT b = ‖a‖2 + ‖b‖2 − ‖a− b‖2)

=
1

2η

(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+
η

2
‖gs‖2. (definition of gs).

By geometry (see Lemma 3.1 in Bubeck)

‖xs+1 − x∗‖ ≤ ‖ys+1 − x∗‖.

Because ‖gs‖ ≤ L and ‖x1 − x∗‖ ≤ R,

1

t

t∑
s=1

(f(xs)− f(x∗)) ≤ 1

t

t∑
s=1

(
1

2η

(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+
η

2
‖gs‖2

)

≤ 1

2tη

t∑
s=1

(
‖xs − x∗‖2 − ‖xs+1 − x∗‖2

)
+

1

t

t∑
s=1

η

2
L2

≤ 1

2tη

(
‖x1 − x∗‖2 − ‖xt − x∗‖2

)
+
ηL2

2
≤ R2

2tη
+
ηL2

2
=
RL√
t
. �

CONVEX OPTIMIZATION 3

smooth first-order optimization

Definition. A differentiable function f is β-smooth iff ∇f is β-Lipschitz.

Exercise 3: Suppose f is twice-differentiable; f is β-smooth iff ‖∇2f(x)‖2 ≤ β, ∀x ∈ X .

Accuracy in non-smooth case was O(1/
√
t). Can we do better if f is smooth? Intuitively

yes, because linearization is a better approximation. Specifically,

Lemma. (Quadratic Upper Bound) Let f : Rn → R be β-smooth. For all x, y ∈ Rn,

|f(x)− f(y)−∇f(y)T (x− y)| ≤ β

2
‖x− y‖2.

Proof. See Lemma 3.4 in Bubeck. Converse is also true. �

Return to simple gradient descent (forget projections; see Bubeck if you care):

xt+1 ≡ xt − η∇f(xt).

Suppose η = 1/β; the quadratic upper bound helps us analyze the gradient step.

Corollary. If f is β-smooth then

f(xt+1)− f(xt) ≤ −
1

2β
‖∇f(xt)‖2.

Proof. Plug in to the upper bound (x ≡ xt):

f

(
x− 1

β
∇f(x)

)
− f(x) ≤ ∇f(x)T

(
x− 1

β
∇f(x)− x

)
+
β

2

∥∥∥∥x− 1

β
∇f(x)− x

∥∥∥∥2
= − 1

β
‖∇f(x)‖2 +

1

2β
‖∇f(x)‖2 = − 1

2β
‖∇f(x)‖2.

�

This implies that gradient descent on smooth functions is a descent method; i.e. the
function value decreases with each iteration. This is not the case for non-smooth functions.

If f is β-smooth then ∇f will approximately vanish near x∗. The corollary implies that
the gradient updates near opt will also vanish. So we’ll know when we’re getting close.

Because the gradient steps get small, we may also be able to avoid the averaging we
used in the non-smooth case.

4 JOHN THICKSTUN

Theorem. Let f be convex and β-smooth on Rn. Gradient descent with η = 1
β satisfies

f(xt)− f(x∗) ≤ β‖x1 − x∗‖2

2t
= O

(
1

t

)
.

• Use last point in the smooth case, versus averaging in non-smooth.
• Error drops like 1/t for smooth instead of 1/

√
t for non-smooth.

• We now achieve ε accuracy in O(1/ε) operations (better!).
• Not optimal: lower bound is Ω(1/

√
ε); room for acceleration.

Proof. Because this is a descent method (corollary) the last-point function value is bounded
by the average function value of the iterates; i.e.

f(xt)− f(x∗) ≤ 1

t− 1

t−1∑
s=1

(f(xs+1)− f(x∗)).

By the corollary and convexity (first-order condition)

f(xs+1) ≤ f(xs)−
1

2β
‖∇f(xs)‖2 ≤ f(x∗) +∇f(xs)

T (xs − x∗)−
1

2β
‖∇f(xs)‖2.

Completing the square, we have

f(xs+1)− f(x∗) ≤ β

2

(
2

β
∇f(xs)

T (xs − x∗)− ‖
1

β
∇f(xs)‖2

)
=
β

2

(
‖xs − x∗‖2 − ‖xs − x∗‖2 +

2

β
∇f(xs)

T (xs − x∗)− ‖
1

β
∇f(xs)‖2

)
=
β

2

(
‖xs − x∗‖2 − ‖xs − x∗ −

1

β
∇f(xs)‖2

)
=
β

2

(
‖xs − x∗‖2 − ‖xs+1 − x∗‖2

)
.

And the sum telescopes:

f(xt)− f(x∗) ≤ β

2(t− 1)

t−1∑
s=1

(
‖xs − x∗‖2 − ‖xs+1 − x∗‖2

)
=

β

2(t− 1)

(
‖x1 − x∗‖2 − ‖xt+1 − x∗‖2

)
≤ β‖x0 − x∗‖2

2(t− 1)
.

�

CONVEX OPTIMIZATION 5

strong convexity

Definition. A function f is α-strongly convex iff

f(x)− f(y) ≤ gT (x− y)− α

2
‖x− y‖2 for all x, y, g ∈ ∂f(x).

Exercise 4: Suppose f is twice-differentiable; f is α-strongly convex iff

∇2f(x) � αI, for all x ∈ X .
I.e. f is bounded below by a quadratic with curvature α. This should help us; intuitively,

if x is far from x∗ then ‖∇f(x)‖ will be large, so we will take big steps towards x∗.

Theorem. Let f : X ⊂ Rn → R be α-strongly convex and L-Lipschitz. The projected
subgradient method with ηs = 2

α(s+1) satisfies

f

(
t∑

s=1

2s

t(t+ 1)
xs

)
− f(x∗) ≤ 2L2

α(t+ 1)
= O

(
1

t

)
.

• Strong convexity lets us drop the R bound; we can quickly forget our initialization.
• Like β-smoothness, α-strong convexity upgrades our rate to O(1/ε).

Proof. Observe that
∑t

s=1
2s

t(t+1) = 1. By convexity of f ,

f

(
t∑

s=1

2s

t(t+ 1)
xs

)
− f(x∗) ≤

t∑
s=1

2s

t(t+ 1)
(f(xs)− f(x∗)) .

And by strong convexity,

f(xs)− f(x∗) ≤ gTs (xs − x∗)−
α

2
‖xs − x∗‖2.

Using the same algebra as in the L-Lipschitz case,

f(xs)− f(x∗) ≤ 1

2ηs

(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+
ηs
2
‖gs‖2 −

α

2
‖xs − x∗‖2

≤ ηs
2
L2 +

(
1

2ηs
− α

2

)
‖xs − x∗‖2 −

1

2ηs
‖xs+1 − x∗‖2

=
1

α(s+ 1)
L2 +

(
α(s+ 1)

4
− 2α

4

)
‖xs − x∗‖2 −

α(s+ 1)

4
‖xs+1 − x∗‖2

=
1

α(s+ 1)
L2 +

α

4

(
(s− 1)‖xs − x∗‖2 − (s+ 1)‖xs+1 − x∗‖2

)
.

Note that s
s+1 ≤ 1 and summing the series we have

2

t(t+ 1)

t∑
s=1

s (f(xs)− f(x∗)) ≤ 2L2

α(t+ 1)
− 2

t(t+ 1)

αs(s+ 1)‖xt+1 − x∗‖2

4
. �

6 JOHN THICKSTUN

Finally, what happens if f is both smooth and strongly convex? Now we have both
a quadratic lower bound and a quadratic upper bound; we know that the first-order ap-
proximation will be not so bad from the upper bound, and we know that we’ll make good
progress from the lower bound. The rate will be governed by the condition number of f .

Definition. Let f be β-smooth and α-strongly convex. The condition number of f is κ ≡ β
α .

Theorem. Let f : Rn → R be α-strongly convex and β-smooth. Then projected gradient
descent with η = 1

β satisfies

f(xt+1)− f(x∗) ≤ e−t/κ‖x1 − x∗‖2 = O(e−t/κ).

• Notice smoothness lets us to bound function value distance using iterate distance.
• Can achieve ε accuracy with O(κ log(1/ε)) iterations!

Proof. Recall that ∇f(x∗) = 0 and therefore by β-smoothness

f(xt+1)− f(x∗) ≤ β

2
‖xt+1 − x∗‖2.

By definition of the gradient descent algorithm,

‖xt+1 − x∗‖2 = ‖xt − η∇f(xt)− x∗‖2

= ‖xt − x∗‖2 −
2

β
∇f(xt)

T (xt − x∗) +
1

β2
‖∇f(xt)‖2.

Combining the smoothness corollary and strong convexity,

0 ≤ f(xt+1)− f(x∗) = f(xt)− f(x∗) + f(xt+1)− f(xt)

≤ ∇f(xt)
T (xt − x∗)−

α

2
‖xt − x∗‖2 −

1

2β
‖∇f(xt)‖2.

And therefore

‖xt+1 − x∗‖2 ≤
(

1− α

β

)
‖xt − x∗‖2

≤
(

1− α

β

)
‖xt − x∗‖2 ≤

(
1− α

β

)t
‖x1 − x∗‖2 ≤ e−t/κ‖x1 − x∗‖2.

�

	projected subgradient descent
	smooth first-order optimization
	strong convexity

