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1. Introduction
Imperative programming languages are well under-
stood, used by a large number of programmers, and
well supported by software tools. However, even
object-oriented imperative languages are often lower
level than one would like. Consider graphical user
interfaces such as those that initially motivated us, e.g.,
the MacDraw dashed-lines dialog box in Figure 1
(top), the Think C options window in Figure 1 (bot-
tom), and the thermometer in Figure 3. We observed

Figure 1. Example User Interfaces
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that some portions of these interfaces are most clearly
and conveniently described using constraints—auto-
matically maintained relations between variables—
while other portions are most clearly described using
standard imperative constructs such as assignments and
sequencing. However, no existing language used to
program these interfaces directly supported both con-
structs. Thus, although these user interfaces may be
written in high-level imperative languages, the con-
straint portions of the user interface are written at a low
level, by hand, and enforced by a code fragments dis-
tributed throughout the program—a recipe for mainte-
nance headaches. To address this problem, we
proposed, in [Freeman-Benson 91] and [Freeman-Ben-
son & Borning 92], an integration of two disparate par-
adigms: a standard object-oriented imperative one, and
a declarative constraint one. The result is named con-
straint imperative programming (CIP). While the origi-
nal motivation for CIP languages was interactive
applications, CIP languages are actually general-pur-
pose languages—in fact, they are a superset of tradi-
tional object-oriented languages.

Consider a slider widget that allows the user to drag the
mercury of a thermometer up and down with the mouse
(Figure 3), and two code fragments (Figure 2) for
achieving this effect. The version in Figure 2 (left) uses
only standard imperative constructs. It requires the pro-
grammer to check whether values have changed, and if
so, to fill or erase the appropriate rectangle increment
and then redisplay the temperature value.

The constraint imperative version in Figure 2 (right)
uses of a combination of imperative constructs and

Imperative Constraint Imperative
while mouse.button = down do

old @ mercury.top;
mercury.top @ mouse.location.y;
temperature @ mercury.height / scale;
if old < mercury.top then

paint_rect( grey, mercury.top, old );
display_number( temperature );

elseif old > mercury.top then
paint_rect( white, mercury.top, old );
display_number( temperature );

end if;
end while;

always: temperature = mercury.height / scale; (1)
always: white_rectangle.top = thermometer.top; (2)
always: white_rectangle.bottom = mercury.top; (3)
always: mercury.bottom = thermometer.bottom; (4)
always: color(white_rectangle,white); (5)
always: color(mercury,grey); (6)
always: display_number( temperature ); (7)
while mouse.button = down assert

mercury.top = mouse.location.y; (8)
end while;

Figure 2. Imperative Code versus CIP Code

constraints. Some of the constraints specify relations
that must always hold, e.g., lines 1–7, while others
specify relations that should hold only while a given
condition is true, e.g., line 8. Imperative constructs,
such as the while statement, are used to control pro-
gram execution (in particular, when certain constraints
should hold). The constraint imperative version on the
right is both higher-level and more maintainable than
the imperative version on the left.

The constraints used in constraint imperative languages
are declarative statements of relations among elements
of the language’s computational domain, e.g., integers,
booleans, strings, and other objects. These constraints
solved by the language’s embedded constraint solver,
and their usefulness stems from the fact that they
emphasize the relation rather than the procedural steps
necessary to maintain that relation. CIP languages are
general purpose programming languages; they imple-
ment general purpose multi-directional constraints,
rather than a uni-directional, or dataflow, subset. For an
overview of constraints and constraint programing, see
[Freeman-Benson et al. 90] or [Leler 87].

The three fundamental problems of CIP language
implementation that our K-machine is designed to
solve are as follows.

mercury.bottom

mercury.top

thermometer.top
mouse

Figure 3. Thermometer
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i. The imperative and constraint paradigms conflict on
the issue of control of variable values: the impera-
tive paradigm gives the precise control of each vari-
able’s value to the programmer, while the constraint
paradigm gives the responsibility to the constraint
solver. In an imperative program, an assignment is
the only way to update the value of a variable, and
each assignment only updates one variable1. In a
constraint program there are no assignments, so
variable values are modified by adding and remov-
ing constraints, yet with each addition or removal
the constraint solver may change any number of
variable values so as to satisfy the remaining con-
straints. Thus any integration of the imperative and
constraint paradigms must include communication
between the two. In the K-machine, this problem is
handled by replacing the value-based store of an
imperative machine with a constraint-based store.
The imperative engine notifies the constraint solver
whenever a constraint is to be added or deleted, and
the constraint solver handles queries from the
imperative engine for the values of variables.

ii. A CIP language will obviously have a mechanism
for creating constraints over the built-in primitive
domains (integers, booleans, real numbers, etc.). An
object-oriented CIP language must also have a
mechanism for defining and creating constraints
over complex user-defined objects. For example, the
programmer who is coding the dialog box in
Figure 1 (top) should constrain lines, rectangles,
dash components, check boxes, etc. rather than the
integer and real number components of those

1. Ignoring the effect of aliasing. As an aside, we note that con-
straints provide a more general and disciplined mechanism than that
provided by aliasing.

A

x y x y

topLeft bottomRight

B

x y x y

Figure 4. Non-renewable constraint

within

To implement this
constraint, we
create these

constraints

topLeft bottomRight

objects. Thus, the programmer should write
left_of(dash[i],dash[i+1]) rather than violating object
encapsulation to write constraints of the form
dash[1].dialog_rectangle.bottom_right.x <
dash[2].dialog_rectangle.top_left.x, etc. Constraints
of this latter form are not object-oriented because
(a) they violate public-private encapsulation bound-
ary of instance variables, and (b) they prevent the
programmer from using a different implementation
of the same abstraction, e.g., a top/bottom/left/right
implementation of rectangles instead of a topLeft
point/bottomRight point implementation. (This
problem is also discussed in [Freeman-Benson &
Borning 92].)

iii. If the part-whole structure of the objects were guar-
anteed not to change, then user-defined constraints
on user-defined objects could be implemented using
properly encapsulated methods that recursively
descend the structure and create primitive con-
straints on the leaves. For example, consider the
within constraint between two rectangles (A and B)
illustrated in Figure 4. One could implement this
using a within method in class Rectangle which calls
the aboveRight and belowLeft methods in class
Point, which call the + and - methods in class Inte-
ger which, finally, create primitive constraints
between the x and y components of the points. No
special mechanisms, other than primitive con-
straints, are necessary.
However, the effect of using methods is that the
within(A,B) constraint is implicit rather than
explicit—there is no longer an explicit
representation of the within constraint; instead, it is
represented implicitly by the primitive constraints
on the subparts of A and B. Thus, if a new object
were assigned to A, then the implicit constraint
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Figure 5. Incorrect constraints after structure change

objects change identity. Most of the machinery in
the K-machine exists to provide exactly such a
mechanism.

In the remainder of this paper, we discuss implementa-
tion considerations common to all constraint impera-
tive programming languages, as well as our
implementation of Kaleidoscope’93 [Lopez et al. 93],
hereafter referred to as Kaleidoscope. The K-machine
is a general CIP language virtual machine, and is not
restricted to the particular choice of primitive domains,
constraint solvers, and inheritance model used in Kalei-
doscope. This implementation demonstrates that the
constraint and imperative paradigms can be integrated
at the virtual machine level, and accessed via an inter-
face similar to that for imperative virtual machines.
Section 2 presents an overview of the Kaleidoscope’93
language and our current implementation. Section 3
outlines the K-machine, a virtual machine for CIP lan-
guages with an incremental constraint solver, and Sec-
tion 4 describes the constraint-based data store, which
augments a conventional imperative data store with
constraints linking values. Related work is discussed in
Section 5, and conclusions and future work are pre-
sented in Section 6.

2. The Kaleidoscope’93 Language
Kaleidoscope’93 is similar to many other object-ori-
ented languages: it has classes, objects with mutable
state, methods, destructive assignment, and so forth.
An object’s state can be changed by sending messages
to it. The key difference between constraint imperative
programming and imperative programming is the abil-
ity to relate variables (such as slots/instance variables,

would become within(Aformer_value,B) rather than
within(Acurrent_value,B). In other words, the new
rectangle stored in A would not be constrained to
stay within B, much to the surprise of the
programmer who had expected the within(A,B)
message to ensure that the A rectangle always be
contained within the B rectangle.
A real-life example of this situation is the dialog
box window in Figure 1 (bottom): the window can
show any one of four or five dialogs, depending on
the item selected from the menu in the upper left.
The object structure for this window is shown in
Figure 5. In Figure 5(a), dialog box one is selected
and the dialog instance variable of the window
object contains to the dialog1 object. The desired
constraint, within(border,dialog), represented by the
dashed line has been implemented by creating
primitive constraints (the gray lines) between the x
and y variables of the component points. When the
user selects dialog box two in Figure 5(b), the
dialog2 object is assigned to the dialog instance
variable and thus the part-whole structure of the
window is changed. Unfortunately, the desired
constraint, within(border,dialog), again represented
by the dashed line, is no longer correctly
implemented! In fact, the old dialog1 object remains
visible rather than the selected dialog2 object.
Obviously using primitive constraints to implement
complex constraints implicitly is inadequate, and a
more powerful explicit constraint mechanism is
necessary.
A general purpose CIP language must have a
mechanism for maintaining constraints on user-
defined objects even when components of those
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locals, globals, etc.) by constraints. When a variable
has one or more constraints on it, the constraint solver
is allowed to alter the binding of the variable, or the
state of the object bound to the variable, to satisfy the
constraints.

Just as a method definition extends an imperative lan-
guage with user-defined messages, a constraint con-
structor definition extends a CIP language with user-
defined constraints. However, in contrast to methods,
constructors need to be re-evaluated when the con-
strained objects change, since constraints might no
longer be satisfied as a result of these changes. The
most flexible constraint model would allow constraints
to be asserted and retracted at arbitrary points in time.
Although the K-machine is capable of supporting this
model, we felt its use at the language level could lead
to difficulties in predicting behavior, since any piece of
code could alter the active set of constraints. Instead,
we adopt a structured design for Kaleidoscope’93, in
which the static program text determines when con-
straints are active. (We might relate this to the GOTO
statement/structured programming controversy of the
1960’s: constructs that allow constraints to be asserted
and retracted at arbitrary times are analogous to GOTO
statements, while the control structures in Kaleido-
scope are analogous to structured control statements.)

The default constraint duration is always, which causes
a constraint to remain active for the duration of the pro-
gram. For example, if we would like the cursor to fol-
low mouse movements, this can be achieved with an
always constraint:

always: mouse.position = cursor.position;

A once duration instructs the system to assert the con-
straint, causing it to be enforced at that moment (and
thus potentially affecting values), and then immedi-
ately retract it. For instance, when an application starts
up, the initial position of the cursor might be the center
of the screen. However, that position should be uncon-
strained thereafter so that subsequent mouse move-
ments allow the cursor to move:

once: cursor.position = screen.center;

In this example, the = constraint is enforced between
cursor.position and screen.center, and is then retracted,
leaving the effects of constraint satisfaction. Assign-

ment statements are a particular kind of once con-
straint, in which the value of the expression on the right
hand side is determined at one instant, then at the next
instant a one-way once constraint is applied between
this value and the expression on the left. This mecha-
nism integrates assignment with the constraint system,
and at the same time allows such standard assignments
as x := x+5. (A once: x = x+5 constraint would be unsat-
isfiable.) The alternative of making assignment state-
ments into conventional load and store sequences
would be possible as well, but would complicate the
semantics and would still require tight communication
between the imperative and constraint engines (Prob-
lem i listed in Section 1).

Finally, the during construct specifies that a constraint
should remain in force during the execution of a block
or loop. The following example asserts that the window
position and mouse position are the same while the
mouse button is down:

assert mouse.position = window.position
during

while mouse.button = down do
....
end while;

We have found it useful to extend the constraint para-
digm to allow both required and preferential con-
straints. The required constraints must hold for all
solutions, while the preferential constraints should be
satisfied if possible, but no error condition arises if they
are not. A constraint hierarchy can contain an arbitrary
number of levels of preference (strengths). These hier-
archies are useful in determining a programmer’s pref-
erences when a system of constraints is under-constrained
or over-constrained. Further information on constraint
hierarchies can be found in [Borning et al. 92].

Due to its object-oriented nature, constraints in Kalei-
doscope are considerably different from constraints in
other language families. Since languages in the Con-
straint Logic Programming family do not provide a
facility for objects with mutable state, there is no auto-
matic mechanism for re-satisfying a constraint as a
result of a state change. (See references [Cohen 90],
[Colmerauer 90], [Jaffar & Lassez 87], [Van Henten-
ryck 89], [Van Hentenryck et al. 92], and [Wilson &
Borning 93].) Other CIP languages do not allow con-
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straints between arbitrary objects, and restrict con-
straints to instance variables. For instance, Siri, another
CIP language that is probably the closest relative to
Kaleidoscope’93, only resatisfies constraints between
instance variables within the representation of a single
object [Horn 92a].

Most constraint languages restrict constraints to those
than can be expressed over built-in primitive domains.
As mentioned earlier, limiting constraints to primitive
domains would be overly restrictive in an object-ori-
ented language, since user-defined domains (i.e.
classes) are frequently used in object-oriented pro-
grams. One of Kaleidoscope’s novel features is the
concept of a constraint constructor, which allows a
constraint to be defined in terms of more primitive con-
straints. Constructors allow definitions of user-defin-
able constraints, similar to the way methods are
implemented in terms of more primitive message
sends. Eventually, all user-defined constraints reduce to
primitive constraints, which are handled by the solvers
over these built-in primitive domains.

The astute reader will notice that if the object structure
is not allowed to change, then constraint constructors
are identical to normal procedures and methods that
create constraints. However, in realistic object-oriented
programs, such as the windows in Figure 1 (imple-
mented as shown in Figure 5), the part-whole structure
of some objects does change, and thus constraint con-
structors are not just methods. The fundamental differ-
ence is that procedures or methods execute only as a
result of an explicit procedure call or message send,
whereas constructors re-execute automatically as a
result of state changes in their constrained objects and
variables. Constructor execution semantics are not as
straightforward as procedure execution, since the lan-
guage implementation needs to determine which con-
straints are affected by any change, which constraints
need to be re-satisfied by constructor calls, and which
other variables need to change as a result. In our
scheme for implementing CIP languages, the book-
keeping required for maintaining constructor execution
semantics is handled at the virtual machine level, sig-
nificantly simplifying code generation.

Constructors are dynamically dispatched using multi-
method lookup, in which all the arguments are signifi-

cant in selecting the constructor, rather than the more
traditional single dispatching. Multi-methods are used
in a number of other object-oriented languages, for
example CLOS [Steele Jr. 90] and Cecil [Chambers
92]. In Kaleidoscope, multi-methods are essential,
since for some constructor calls, the first argument
might be unbound. For example, we might call +(x,y,z),
with y and z bound to Vectors and x to be determined
by the constraint solver, in which case the + constraint
might be bound to the +(Vector, Vector, Vector) con-
structor and x would become a Vector.

2.1  Implementation Overview
The Kaleidoscope’93 implementation consists of a
compiler, a primitive constraint solver, and a special-
ized virtual machine, the K-machine. All three are cur-
rently implemented using the Common Lisp Object
System. A Kaleidoscope program is a collection of
class, procedure, and constraint constructor definitions,
and a single initial procedure call. The compiler trans-
lates Kaleidoscope programs into K-machine instruc-
tions, a.k.a. K-codes. The K-machine is derived from
an imperative virtual machine, and contains a code
store, data store, stack, program counter, and various
general purpose registers. Figure 6 illustrates the com-
ponents of the Kaleidoscope’93 language implementa-
tion.

Our compiler performs some optimizations to reduce
or eliminate expensive run-time constraint solving,
such as inlining to avoid constraint satisfaction in cases
where an object’s class can be statically determined as
primitive, as well as a few standard compiler optimiza-
tions such as constant folding, code motion, and dead-
code elimination. However, in contrast to imperative
languages, the chief bottleneck to CIP languages is
constraint solving, and so a major focus of our future
work will be investigating additional optimizations to
reduce or eliminate run-time constraint solving
(Section 6).

3. The K-machine
The K-machine interprets K-code instructions. These
instructions include typical imperative instructions,
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Figure 6. Kaleidoscope’93 Implementation

carry out these changes, executes code to resatisfy
those constraints, finds further changed variables, and
so forth.

At the K-machine level, constructors and procedures
have identical representations: a signature and a block
of K-codes. To ensure that constructors behave as rela-
tions, the Kaleidoscope language definition requires
that all side effects be restricted to the local variables of
the constructor. Viewed from the outside, all the con-
structor is allowed to do is place other constraints on its
arguments. If satisfied, these further constraints will
result in the enforcement of the higher-level constraint
represented by the constructor. Although constructors
and procedures have identical representations, the K-
machine handles their executions differently. Proce-
dure calls are handled as in a traditional object-oriented
language: the CallProc K-code selects and invokes the
appropriate procedure using multi-method lookup.
Constraints, however, are handled by constraint tem-
plates. A constraint template is, essentially, a continu-
ously repeating procedure call except that it calls a
constraint constructor rather than a procedure. A tem-
plate is created for each instance of a constraint and
keeps track of the variables being constrained and the
name of the constraint being applied. For an always
constraint, a constraint template is simply asserted using
AddTemplate. For a once constraint, the template is
asserted and immediately retracted using an AddTem-
plate, RemoveTemplate pair. Finally, for an assert/dur-
ing constraint, the template is added prior to, and
removed following, the block of code.

A template is executed once it is added, dynamically
bound to a constraint constructor, and invoked. Logi-
cally, we can view templates as all being re-executed

such as Add, Load, and Branch, as well as the special-
ized instructions listed in Figure 7 and discussed
below. The K-machine is derived from imperative vir-
tual machines and contains many of the same compo-
nents. It differs from standard imperative VMs in that it
supports constraint-based operations on objects. The
value-based data store of imperative machines is
extended into a constraint-based data store by allowing
objects to be connected by relations.

In the purest sense, a constraint-based data store is a set
of constraints which, when taken together, determine
values for variables. (This is the approach used in the
cc family of languages [Saraswat 93].) Variables in this
case are as in mathematics, rather than naming change-
able storage locations. However, for efficiency reasons,
the K-machine data store does contain traditional
imperative variables, as well as the constraints that
determine their values. The data store is represented as
a graph whose nodes represent variables and edges rep-
resent both pointers and constraints (i.e., there are two
types of edges: one type represents traditional pointers
from variables to objects, and the other type represent
constraints between variables). The constraint edges
are either constructed or primitive. Constructed con-
straint edges remember the child constraints that they
have created. Primitive constraint edges can only be
placed between variables (nodes) containing objects
from the built-in domains (which are numbers, charac-
ters, strings, and booleans in Kaleidoscope’93). In
order to integrate constraints with objects, additional
bookkeeping is required to maintain the constraints as
the objects change state. After each state change, the
system identifies constraints linking the changed vari-
able to other variables and objects, finds constructors to
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Operation Arguments Description
CallProc ProcedureName, Arguments Call a procedure
Return Return from a procedure or constructor
MinStrength Strength, Result Minimum of the current strength and Strength
LoadTemplate Var, Template Define a Var to refer to a constraint template
AddTemplate Var Add and Execute the constraint template
RemoveTemplate Var Remove all constraints for the constraint template
TrueBranch Condition, NewPC Branch to NewPC if Condition is True
FalseBranch Condition, NewPC Branch to NewPC if Condition if False
ClassBranch Var1, Var2, NewPC Branch to NewPC if Var1 and Var2 are members of

the same class
PrimitiveAssignment Var1, Var2 Optimized assignment for case where classes of

Var1 and Var2 are primitive
Unbind Var Clears the variable
New Var, Class Var is initialized with an object of class Class
PrimitiveAction Number, Args Built-in unnamed operation

Figure 7. K-machine Instructions (K-codes)

To support the incremental execution of constraints,
each variable maintains two lists: the upstream vari-
ables, which were used to compute that variable’s cur-
rent value, and the downstream templates, which are all
templates whose choice of, or execution of, a construc-
tor could possibly depend on that variable’s value.
Assignments and computational primitives update the
upstream variables list, and constraint constructors use
this list to update the downstream templates list. For
example, after executing the trivial program:

always: A + E = F;
A := B + C; D := A * G;

A’s upstream variables list is {B,C}, and D’s upstream
variables list is {A,B,C,G}. A’s downstream templates
list is {+}, and D’s downstream templates list is {}.

Incremental constraint satisfaction is triggered by
assignment. When a variable is assigned to, all the con-
straint constructors depending on that variable (i.e., in
the second list) are re-executed. A constraint is re-exe-
cuted by first removing the constraint edges placed on
component objects by the constructor, and then execut-
ing the code for the selected constructor. This avoids
having to re-execute constraints when a component
changes that is unaffected by the constructor.

To illustrate the incremental execution of constructors,
consider the Kaleidoscope program in Figure 8. The
constructor +(Point, Point, Point) is chosen at line (1)

following each state change, so as to maintain user-
defined constraints. In fact, the Kaleidoscope’91 imple-
mentation did exactly that [Freeman-Benson 91]. How-
ever, while this made constraint maintenance
straightforward, most of these constructor re-execu-
tions were superfluous as, in the vast majority of cases,
they filled slots with exactly the same values as the
slots had previously held. Further, although the Kalei-
doscope’91 primitive solvers were incremental, the
continual re-execution of constructors and regeneration
of primitive constraints did not allow the implementa-
tion to exploit these incremental algorithms.

The K-machine avoids this bottleneck by re-executing
constraint templates only when they might be affected
by a state change. This interacts with the changing
object structure problem in two ways. Changing an
object’s structure changes the components that need to
be constrained. Furthermore, changing an object’s
structure might change which constructors are invoked
to satisfy its constraints. Incrementally satisfying con-
straints requires additional bookkeeping in the K-
machine, but the cost is small compared to the tremen-
dous performance advantage of incremental constraint
satisfaction over repeatedly solving all constraints. Fur-
ther, this design allows us to exploit the incremental
properties of our local propagation solver [Freeman-
Benson et al. 90], [Sannella 93]. See Section 4.1 for
more details.
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since p1 and p2 contain objects of class Point. The
Point object in p3 becomes the sum of p1 and p2. The +
constructor is not re-executed after the assignments to
p4.x and p4.y at line (2) because these state changes have
no effect on p1, p2, and p3 themselves, but only on their
components. The assignment to p2 in (3) however,
requires that the p1 + p2 = p3 constraint be re-satisfied,
since the constraint no longer holds as a result of the
assignment to p2. The appropriate constructor is chosen
(again, the +(Point, Point, Point) constructor) and executed.

An assignment v := expr may change the identity of the
object to which the variable v refers, which may neces-
sitate using different constructors to satisfy the con-
straints attached to v. This automatic and incremental
re-satisfaction of constraints after an assignment is the
solution to the “changing object structure” problem
illustrated in Figure 5 — thus this problem does not
occur in CIP languages implemented using the K-
machine.

constructor +(a, b: Point) = (c: Point)
a.x + b.x = c.x; a.y + b.y = c.y;

end constructor +;

procedure start ()
var p1, p2, p3, p4: Point;
p1 := 2@2; p2 := 10@10;
always: required p1 + p2 = p3; (1)
p4.x := 100; p4.y := 100; (2)
p2 := p4; (3)

end procedure start;
start;

Figure 8. Incremental constraint re-satisfaction

4. Constraint-Based Data Store
In the Smalltalk tradition, Kaleidoscope language and
implementation components are represented as objects,
including all user-defined objects, primitives such as
numbers and booleans, and even system objects such
as stack frames. Kaleidoscope objects are stored in a
constraint graph consisting of nodes, objects, and con-
straint edges. This uniform treatment simplifies the K-
machine implementation. If there are no constraint
edges between objects, then the constraint store resem-
bles a conventional imperative store. Thus, one can
consider a constraint store as a generalization of an

class: Stackframe
parent: nil
constraints: p1 = p2
.....
slots:

p1

p2
class: Point
.....
slots:

x

y

class: Point
.....
slots:

x

y

=(Point,Point)

class: Number
....
value:

class: Number
....
value:

class: Number
....
value:

class: Number
....
value:=(Number,Number)

constructor =(p: Point, q: Point)

end constructor =;

p.x = q.x;
p.y = q.y;

=(Number,Number)

Figure 9. Constraint Graph Representation of Objects
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imperative store where variable values may also be
determined by constraints in addition to identity
assignment.

Figure 9 illustrates the representation of an equality
constraint between two points. The large boxes are
objects, the small labelled boxes which point to objects
are variables, and heavy lines indicate constraints
(labelled by ovals with the selected constructor). When
the = constraint template is added, a constraint edge is
placed between p1 and p2. Multi-method lookup rules
are used to find a constructor with the same name and
arity as this constraint edge. The =(Point, Point) con-
structor executes and places two new constraint edges
on the graph, one between the x slots of p1 and p2 and
one between the y slots of p1 and p2. Continuing in the
same fashion, the = constraints between the x and y
slots are satisfied by finding constructors, =(Number,
Number). These constructors place primitive constraint
edges on the constraint graph. User-defined constraints
eventually bottom out at primitive constraints over
built-in domains. The primitive constraint solver uses
local propagation and Gaussian elimination to com-
plete the computation.

The Kaleidoscope constraint store is implemented
entirely in Common Lisp. Garbage collection is han-
dled by Lisp’s garbage collection since the Kaleido-
scope constraint store eliminates all references to
objects that are inaccessible at the Kaleidoscope lan-
guage level.

4.1  Primitive Constraint Solvers
Kaleidoscope’93 uses two different types of primitive
constraint solvers, one for finding variable values in
particular domains (e.g., booleans, numbers, and
strings) and one for determining object identity and
structure. The former is the familiar notion of con-
straint solver from constraint programming languages
which satisfies constraints over particular value
domains and the latter is used to solve for object iden-
tity.

Most constraint languages solve constraints over differ-
ent value domains, such as booleans, numbers, colors,
and strings. We term these constraints value con-
straints, since the satisfaction of these constraints finds

values for objects within their domains. The primitive
constraint solver we currently use in the Kaleido-
scope’93 implementation is CobaltBlue. CobaltBlue is
an extension of SkyBlue [Sannella 93], and can solve
simultaneous equations, multiple output and non-
unique constraints incrementally by local propagation.
However, the K-machine design is general enough to
accommodate other solvers.

CIP languages combine imperative constructs such as
object identity and class membership with declarative
constraints. Naturally, these constructs can also be
specified by constraints. One of the fundamental con-
cepts of object-oriented programming, object identity,
can result in implicit relations, even when explicit iden-
tity constraints are supported. Furthermore, by allow-
ing constraints on object identity, object structure, class
membership, and object value, complex interactions,
such as circularities, can occur between any two differ-
ent categories of constraints. To deal with these interac-
tions, we developed the VICS (value/identity/class/
structure) framework, to factor out conflicts between
object value and object identity.

Identity constraints are used to treat object identity as a
declarative relation that is compatible with the Kalei-
doscope constraint model. The VICS Vapo-Ware solver
is used by the K-machine to categorize constraints (by
value and identity), and distribute them to the appropri-
ate sub-solver. Similar to value constraints, identity
constraints are solved by local propagation, however
the satisfaction of these identity constraints determines
variable references instead of object values. Identity
constraints and the VICS Vapo-Ware solver are dis-
cussed in [Lopez et al. 94].

5. Related Work
The special implementation needs of constraint imper-
ative programming (class-based objects with inherit-
ance, multi-methods, constraint solving, and
dynamically bound constraints) led us to design a spe-
cial-purpose virtual machine to implement Kaleido-
scope. An alternative would have been to use one of the
many existing virtual machines for imperative or con-
straint-based languages.
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It would be possible, though extremely awkward, to
implement CIP languages with a virtual machine from
a conventional object-oriented language with a value-
based data store, e.g., the Smalltalk-80 VM [Goldberg
& Robson 83]. However, to do so, the Kaleidoscope
compiler would have to implement the entire con-
straint-solving semantics of the K-machine in the code
generator to ensure that the effect of a constraint-based
data store was achieved. This would needlessly compli-
cate the code generator, and could actually reduce the
speed of the resulting program. Virtual machines for
conventional imperative programming languages are
even less suited to CIP languages because they support
neither objects nor constraints.

Similarly, it would be possible, though awkward, to
implement CIP languages using a virtual machine for a
pure constraint language or constraint logic language.
For example, CLP( ) is a constraint logic program-
ming language whose implementation has a constraint
solving engine for constraints over the real numbers
[Jaffar et al. 92b]. The CLAM [Jaffar et al. 92a] is the
abstract machine used in the CLP( ) interpreter, which
is based on the WAM, often used in Prolog implemen-
tations [Warren 83], [Ait Kaci 90]. To implement a CIP
language using the CLAM, one would have to translate
the CIP language semantics into one of the object-ori-
ented logic programming schemes. (We in fact did this
in a Kaleidoscope interpreter written in CLP( ).
Implementing this interpreter was very useful in
exploring language design issues. However, its perfor-
mance was much worse than that of our current imple-
mentation.)

Another implementation technique is to compile into
some host language and place embedded calls to the
constraint solver library when necessary. CIP lan-
guages such as Kaleidoscope use constraints for all
computations, so that these embedded calls would be
ubiquitous, resulting in a huge, bloated executable file.
This approach is ill-suited for CIP languages, but
would very likely be the most practical choice for
imperative languages with constraint-based libraries.

Still another approach would be to implement a con-
straint imperative class library. Certain coding rules
would be enforced on programmers, such as requiring
them to notify the constraint solver after each destruc-

½

½

½

tive assignment. Not only would this be inconvenient
for programmers, but the compiler used under this
approach would be the host language compiler rather
than a specialized CIP compiler. Thus there would be
no possibility for compile-time analysis to pre-solve or
optimize constraints and thus eliminate costly run-time
constraint solving. Such analysis is essential for the
implementation of high-level languages, and thus we
believe that a class library would be the wrong imple-
mentation technique.3

The cc family of languages [Saraswat 93] generalize
the CLP scheme to include such features as concur-
rency, atomic tell, and blocking ask; if we used such a
language instead of Kaleidoscope for constraint pro-
gramming we could represent objects as perpetual pro-
cesses that consume an (unbounded) stream of
messages. However, the logic programming transla-
tions are too unconventional for the present project of
modeling objects as mutable entities with state and
identity—here we have consciously chosen to be more
evolutionary, and thus our goal is to extend the impera-
tive framework with constraints rather than asking our
clients (Kaleidoscope programmers) to learn a new
paradigm.

In previous work we presented language designs for
Kaleidoscope’90, ‘91, and ‘93 [Freeman-Benson 91],
[Freeman-Benson & Borning 92], and [Lopez et al.
93]. Further information on the incremental local prop-
agation algorithms used in this implementation can be
found in [Freeman-Benson et al. 90] and [Sannella 93].
Other constraint-based languages include Bertrand
[Leler 87] and Siri [Horn 92b], [Horn 92a]. Both Ber-
trand and Siri are based on an Augmented Term
Rewriting virtual machine, which is not powerful
enough to support all of the imperative features of
Kaleidoscope such as long-lived constraints between
arbitrary objects.

3. Note that by compile-time analysis we are only specifying that
the analysis be done by the compiler, but not when the compiler is
run. Thus we are not excluding the option of dynamic compilation
as is done in Smalltalk and Self.
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6. Conclusions and Future Work
Our virtual machine for CIP languages—the K-
machine—is powerful enough to support the unique
features of such languages efficiently. The K-machine
replaces the value-based data store of a conventional
imperative machine with a constraint-based data store.
It incrementally maintains this data store, re-satisfying
constraints only when necessary. The constraint-based
data store utilizes constraint constructors and constraint
templates to enforce constraints over objects whose
part-whole structure changes dynamically. Constraint
constructors are multi-method dispatched, and preserve
object encapsulation by not accessing any variables
outside the object being constrained.

The Kaleidoscope’93 implementation described in this
paper is in use, and we have written a small number of
programs to exercise various CIP language features.
We plan to continue work on the implementation, to
write larger programs in the language, and to feed the
results back into the language design and implementa-
tion. Another major effort will involve increasing the
efficiency of the code produced by the Kaleidoscope
compiler, in particular to eliminate run-time constraint
satisfaction when possible. (Eliminating runtime con-
straint satisfaction not only eliminates the cost of solv-
ing the constraints, but it also eliminates the need for,
and thus cost of, maintaining backpointers and other
constraint specific data structures.) Finally, we are
designing a constraint-based type system suited for
constraint imperative programming languages.
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