
The Stripetalk Papers:

Understandability as a Language Design Issue in

Object-Oriented Programming Systems

T.R.G. Green, A. Borning, T. O’Shea, M. Minoughan, and R. Smith
Rank Xerox EuroPARC, Cambridge, U.K.

Foreword

This paper (originally just titled “Understandability as a Language Design
Issue in Object-Oriented Programming Systems”) grew out of work done at
Rank Xerox EuroPARC during the summer of 1988, in which we designed
a series of experiments to compare the understandability of various features
of object-oriented languages. A major question was the understandability of
prototype-based vs. class-based languages. The work was quite preliminary,
but we thought we’d try sending it to ECOOP’89. The paper was rejected —
perhaps the program committee wanted running implementations or actual re-
sults of experiments or some similar unreasonable demand. However, an earlier
and shorter draft (known as “The Stripetalk Paper”) circulated in the proto-
types community in the following years: a kind of cult classic, perhaps, for an
extremely small cult.

The paper that follows is basically the same as the rejected ECOOP paper,
and is presented as an historical document. Perhaps readers will still find the
space of language alternatives it presents of interest.

Abstract

Language features that influence the learnability and understandability of Small-
talk (O’Shea 1986) have motivated us to explore alternative language designs.
We present a language space whose dimensions correspond to the ways of deal-
ing with these identified learnability-influencing features. For example, one
dimension represents how new objects are created in a language; we consider
prototype-based copying and class-based instantiation. We establish the posi-
tions of some existing languages in this space and locate several new ones. Some
of these languages may hold promise for improved learnability and understand-
ability, and we propose a mechanism for testing them with comparison studies.
An important observation from the current explorations has been that it is nec-

1



essary to consider language features in the context of the tools provided by the
environment; the effectiveness of a particular linguistic feature is enhanced or
diminished by the degree of environmental support provided for it.

Keywords: Understandability, usability, object-oriented programming, lan-
guage design.

1 Introduction

Our starting point is that object-oriented languages are significant members of
the family of programming languages, and that Smalltalk is among the most
mature of such languages and environments. Smalltalk also has a mature user
community: there are effective communities of Smalltalk users with adequate
teaching experience, and a number of teaching and reference texts are now avail-
able (e.g. Kaehler and Patterson, 1986; Pinson and Wiener, 1988). However,
beginners experience difficulties in learning and understanding the language
(O’Shea 1986). We believe that some changes to the language would result in
significant gains in both learnability and understandability.

This paper starts from Smalltalk and explores how some of the possible al-
ternative design decisions affect learning and usability. We do this by listing
the linguistic features that seem to us to be particularly important in estab-
lishing the flavour of Smalltalk, and then envisaging a language in which an
alternative decision was made. In this way we can generate a sort of giant cube
of hypothetical languages. We are looking for languages at the extreme points
on the cube, rather than slight variations, so as to better explore the space of
possibilities. A dominant theme, but by no means the only theme, is whether
prototypes and copying could make a useful alternative to classes and inheri-
tance, as suggested by Lieberman (1986), Borning (1986), and others. Some
of the languages already exist, others are designed as interesting and reason-
able languages in their own right, and finally some are extreme designs that are
interesting for doing comparative experiments, but not as languages that one
would realistically expect to be used for programming.

We are building on our previous work in this area, in particular the em-
pirical studies by Tim O’Shea on Smalltalk learnability (O’Shea, 1986), and
the Deltatalk proposal by Alan Borning and Tim O’Shea for a simplification of
Smalltalk-80 (Borning and O’Shea, 1987). In the present experiments, however,
we are proposing more than the modest Delta changes.

The changes that we are proposing are not solely linguistic. An effective
programming system demands the support of adequate programming tools, and
Smalltalk, with its various browsers, notifiers and inspectors, does an unusually
good job in that respect. Some of our design proposals would reduce the quality
of the Smalltalk programming system unless additional features were introduced
into the environment; for example, dispensing with the class inheritance system
would mean that mass updates to objects, normally performed by editing the

2



class definition, would become very long-winded unless some tool were provided.
So as part of discussing linguistic proposals we believe that it is necessary to
mention their implications for the programmer’s tools.

It is important to recognise that we are not so much interested in particular
languages as in the learnability and understandability of various language fea-
tures. Therefore, we are relatively unconcerned with implementation problems,
execution speed, and memory usage. Implementation techniques are rightly an
active area of research, and some of the new languages we present could create
problems that would severely tax the creativity of any implementor. However,
we believe that gaining insight into the way that particular features contribute
to understandability and learnability would be the most salient contribution for
future designers of systems and languages. Restricting ourselves to languages
that are realisable on current hardware is not the best way to explore the space
of language features.

Our approach stands in contrast to that of Wegner (1987) who maps out the
design space of object-based languages according to different aspects of compu-
tational behaviour, rather than understandability issues. The two approaches
are equally valid views and have some similarities; it is simply that the motiva-
tion behind each is different. However, we would argue that Wegner’s view that
an object-based language is object-oriented only if its objects belong to classes
and behaviour is shared via inheritance through the class hierarchy is unneces-
sarily exclusive since the functionality provided by classes and inheritance can
be provided by a variety of systems, including systems in which state and/or
behaviour is held locally to the object, such as prototype-based systems.

2 Making Evaluative Comparisons

Outlining the design choices is of little use unless some basis for choice can be
found. Many techniques for comparing the learnability, understandability, and
usability of languages have been reported in the literature (Soloway and Iyengar,
1986; Olson et al., 1988) but standard laboratory studies are extremely expen-
sive in time and effort. We propose therefore to restrict ourselves to a single
aspect of evaluation, viz. understandability, especially since the understandabil-
ity of Smalltalk emerged as a significant problem in the studies reported by
O’Shea (1986). The discussion of particular languages in the following sections
is therefore to be read in the context of our concern with “understanding how
simple things are done in the language by watching demonstrations.”

We do not, of course, believe that understandability means nothing more
than that; nor that understandability, even in the widest sense, is the only way
in which to evaluate language designs; but we do believe that it is an important
test, on which existing OOPS designs could do better.

The conventional experiments on programming language comprehensibility
have frequently relied on paper and pencil techniques. This is inappropriate to

3



a language with as powerful an environment as Smalltalk and the related de-
signs we discuss here. We therefore propose to use a ‘Watch and explain’ game.
For this game, we intend to devise written materials discussing each language
and video tapes showing how operations are performed. Recent evidence sug-
gests that watching videos is an excellent way to explain powerful environments
(Payne et al., in prep.).

The subjects will be given some material explaining one of the languages,
and then asked to read the written examples or to view the tape. They will
then be asked questions of the form “what happened in the machine when the
user did x” or “what would happen if instead the user typed y”. From this data
we hope to glean information about ways to improve the understandability of
object-oriented languages.

The environments in each case will be Smalltalk-like, except as changes are
required by particular features of different languages. (Of course, the environ-
ment is critical in learnability and usability; we just don’t want to take on too
much for the first experiments.)

3 Linguistic Features

There is some indication that the following linguistic features contribute to the
understandability of an OOPS, from empirical studies (O’Shea and Borning,
1986) and also through anecdotal teaching experience (e.g. see the ‘learnability’
panel session in OOPSLA 1986).

These features are:

• presence or absence of metaclasses

• classes or prototypes for generating new objects

• explicit representation or not of abstract message protocol (separate from
concrete implementation)

• kind of mass updating facility: shared classes, dependency links, indirec-
tion, retrieval and edit, none

• technique for handling references to overridden inherited methods: none,
“super” as in Smalltalk, “boxed methods”

• presence or absence of delegation

• presence or absence of assignment statements

• updating and browsing built into the language or provided by the envi-
ronment.

Here is a brief discussion of each of these items.

4



3.1 Presence or absence of metaclasses

A metaclass is simply a class whose instances are themselves classes. Any system
in which every object holds its behaviour in a class, and in which classes are
objects, will have metaclasses. Metaclasses were identified by O’Shea (1986) as
a severe hurdle for learners of Smalltalk, and it is important to investigate the
effects of dispensing with them.

An alternative design decision would be to preserve metaclasses but to make
their use less difficult. Smalltalk learners encounter metaclasses early, because
class-specific instantiation of new objects requires a separate metaclass for each
class. If that requirement for an early encounter could be avoided, learners might
find that they were mature enough in their use of an OOPS to comprehend
metaclasses readily when they did come to them.

It should be noted that it is possible to use classes to hold behaviour and
for classes not to be objects, but this solution has generally been less favoured
than that which makes everything in the system be an object, thus enhancing
consistency.

3.2 Use of classes or prototypes for generating new objects

Although OOPS grew up around the notion of class, alternatives are available.
If classes are used, new objects are created by sending a “new” message to a
class. In contrast, if prototypes are used, new objects are created by copying
and modifying existing ones.

One disadvantage of classes, pointed out in Borning (1986), is that to change
the message protocol of one object in a class-based system, i.e. to have instance-
specific behaviour, it is necessary to create a new class for that object. In this
case a prototype-based system has a clear advantage in that an individual object
can be modified directly.

A widely-held belief is that although classes are useful, building a class
hierarchy and getting it right is difficult. Lieberman (1986) and Borning (1986)
have independently argued that it is difficult for the programmer designing new
objects (or rather a class hierarchy for new objects) to start from the most
abstract level and proceed to the more concrete, and that prototype systems
have a usability advantage because they allow the programmer to operate at the
concrete level. Note that this applies to both the sharing of behaviour through
inheritance as well as the determination of what comprises the state of an object
(i.e. what its instance variables are), and that the two are independent. That
is, it would be possible to have a prototype-based system which used classes to
share behaviour between objects. The idea that it is better for the programmer
to be able to work at the concrete level seems intuitively reasonable, but at
present there is no strong empirical support to indicate that this is the case. If
it were the case then this would be an argument in favour of a system which used
prototypes to make new objects and in which all behaviour for each object was

5



held locally. (It may be that in the implementation of such a system behaviours
would be shared between objects for space efficiency, but in such a way that
this would not be visible to the user.)

Two kinds of prototype-based system can be envisaged for making new ob-
jects. In the ‘Platonic’ system, all similar objects, say all cows, are made by first
copying from a prototype ‘ideal’ cow and then changing attributes (colour, age,
name, etc.) as required. The ‘ideal’ cow serves only as a template for building
new objects. In the ’Aristotelian’ system there are only ‘real’ cows. To make
a new cow, any already-existing cow may be copied. We have investigated the
Aristotelian system, which is inherently simpler.

3.3 Explicit representation or not of abstract message pro-
tocol

An object’s message protocol is what it presents to the outside world. In theory
one should be able to substitute one object for another as long as it obeys the
correct message protocol, irrespective of its implementation. This is important,
for example, if one wants to change the concrete representation of an object — as
long as the protocol remains the same, no changes to the users of the object are
needed. An important part of the design task in object-oriented programming
is deciding on the message protocols, since it is these protocols that specify how
the objects may be used. However, in Smalltalk, for example, there is no explicit
representation of protocol as an entity distinct from the object’s implementation.
There are such entities in such statically-typed object-oriented languages as
Emerald. (“Statically typed” means that the type of every expression can be
determined and checked for consistency at compile time. This allows type errors
to be detected at compile rather than run time.) In more conventional languages
such as Ada and Modula-2, the package or module specification is analogous to
a representation of abstract message protocol; it is widely accepted by designers
and users in this school that this is a Good Thing, assisting the understandability
of inter-relationships within the program as a whole.

3.4 Kind of mass updating facility: shared classes, depen-
dency links, indirection, retrieval and edit, none

In a class-based system such as Smalltalk, one can add or edit a method to some
class and all instances of that class and of its subclasses will be immediately
affected. This capability is not automatically available in a prototype-based
system. Although it is likely to be more important for experts than for novices,
informal evidence has indicated that even novices experience problems when
this type of facility is not provided (Fischer and Lemke, 1988).

There are however a number of ways to support mass updating in a prototype-
based system. Updating is an example of a feature which can be provided either

6



by having a language with a shared information structure, such as a class hier-
archy or shared ancestors, or by having an environment with specialised support
for mass updating. Some alternative methods of updating are as follows.

First, we could use dependency links, in which the behaviour of an object B
could be declared to be dependent on that of object A. (This is a simple variety
of one-way constraint.) If a method in A were changed, and if B had the same
method as the old version in A, then B’s method would be changed in the same
way. Also, if a new method were added to A, and if B didn’t already have a
method with the same selector, than the new method would also be added to
B. This updating could be done automatically, or only upon an explicit request
by the user.

Second, we could use indirection. B could have methods that said “look
in the corresponding method in A”; as a result updating would be automatic.
To run the method in B, we could either copy the method from A into B at
runtime, or use delegation (Subsection 3.6).

Third, instead of performing mass updating through the use of shared in-
formation, we could use some sort of retrieval mechanism to retrieve all the
objects that should be updated, and (in effect) update each of the retrieved ob-
jects, either automatically or interactively. This option relies on a programming
environment with smart features, and is discussed below.

3.5 Technique for accessing inherited overridden methods:
none, “super” as in Smalltalk, or “boxed methods”

Smalltalk includes a construct (“super”) that allows a programmer to access
inherited methods that have been overridden in the subclass. However, this
construct is known to be confusing to novices (O’Shea, 1986), and has some
odd properties. Simply eliminating it may well be acceptable in a language for
novices, but probably wouldn’t be in a language for experts, due to the loss in
modularity. Without “super” or a similar mechanism, such as “resend” in Self,
one would either need to copy down the code from the overridden method, or
else split off an auxiliary method from the overridden one which could then be
accessed both from the original method and from the method in the subclass.
The copying technique is not satisfactory, since now there are two copies of
essentially the same code, introducing an updating problem (the need to keep
both copies updated). The splitting method also causes problems, since adding
a subclass might require changes in the superclass; one would prefer that making
a subclass could be done in a more modular way.

In a system in which behaviour and state are completely self-contained, “su-
per” as such doesn’t make sense. To support something like it, one possibility
is to include inherited methods duplicated in the child (under a different selec-
tor). Another is to put a “box” around the portion of the new method that was
inherited, so that it is identified as a unit for purposes of updating, whether by
the programmer or by the system.

7



3.6 Presence or absence of delegation

Lieberman (1986) has proposed that delegation be used to support inheritance
of methods in a prototype-based system, and also for a number of advanced
programming applications (he gives a dribble stream as an example). We can
and should separate delegation and prototypes: all four combinations of presence
or absence of delegation and prototypes vs. classes make sense. In addition, we
could still provide delegation for the advanced applications, while not using it
routinely for inheritance.

3.7 Presence or absence of assignment statements

Assignment statements are ubiquitous in most imperative programming lan-
guages, and are also known to be a cause of confusion for novices (Soloway and
Ehrlich, 1984, Gilmore, 1986). They are particularly strange in object-oriented
languages as they are not consistent with the message-passing metaphor. The
language Self does away with assignment statements, instead handling state
change requests via automatically provided methods (Ungar and Smith, 1987).

3.8 Updating and browsing built into the language or pro-
vided by the environment

The choice of language features has a direct impact on what tasks the user
will require to be supported by the environment. Some means of browsing
related objects should be provided. Users should be also be provided with a
‘power tool’ for changing many objects at once — in Smalltalk for example all
objects belonging to the same class can be changed simply by changing the class
definition. There are of course many other possibilities for specifying the group
of objects to be changed. These include retrieval by abstract message protocol,
by ancestry, by concrete representation (presence of given instance variables),
by arbitrary user-defined mark (or ‘stripe’ — see Subsection 4.1), by behaviour,
or some combination of these.

4 A Cube of Languages

Figures 1 and 2 show a matrix of languages which touches on the corners of our
“cube” of design choices. Some of these languages or variants listed above are
already defined and in some cases implemented. These are Smalltalk (Goldberg
and Robson, 1983), Deltatalk (Borning and O’Shea, 1987), CLOS (Bobrow et
al., 1987), Self (Ungar and Smith, 1987), Emerald (Black et al., 1986, Hutchin-
son, 1987), and Trellis/Owl (Schaffert et al., 1986). The remaining ‘languages’,
Stripetalk, Prototalk+Workbench, Delegation talk, and Sharetalk, are briefly
described below. Stripetalk and Prototalk+Workbench are discussed in more
detail than the others, since they are among the languages we plan to study.

8



Sec. 3.1 Sec. 3.2 Sec. 3.3 Sec. 3.4
Metaclasses Classes or Separate rep What is
present prototypes of protocol shared

Smalltalk yes classes no classes

Stripetalk no prototypes [yes] nothing

Prototalk+ no prototypes [yes] nothing
Workbench

Deltatalk no classes no classes

CLOS yes classes no classes

Delegation- no prototypes prototypes
talk
Sharetalk no prototypes behaviours

Self no prototypes no prototypes

Emerald no neither yes none

Trellis/Owl no classes yes classes
(“types”)

[brackets] indicates arbitrary choice; space indicates no choice yet.

Figure 1: The Language Matrix (Part 1)

9



Sec. 3.5 Sec. 3.6 Sec. 3.7 Sec. 3.8
How to Delegation Assignment Updating
handle super present mechanism

Smalltalk super no yes shared
classes

Stripetalk boxed methods [yes] [yes] search and
replace

Prototalk+ boxed methods [yes] [no] workbench/
Workbench ancestry

Deltatalk super no yes shared
classes

CLOS super-ish no yes shared
classes

Delegation- delegation yes shared
talk prototypes
Sharetalk super-ish shared

behaviours
Self super-ish yes no shared

(resend) prototypes
Emerald don’t no yes none

Trellis/Owl super no yes shared
classes

Figure 2: The Language Matrix (Part 2)

10



In the language designs, we of course strived for a set of choices representing
reasonable combinations of the chosen features. When it was necessary to make
an arbitrary choice, we used the criterion of selecting extreme points in the
space of languages.

4.1 Stripetalk

Stripetalk uses prototypes. Updating a single object is easily handled by sending
that object an edit message. Mass updates are handled by retrieving all objects
matching some description, and applying the same edit to all of them. To
support retrieval, objects can be marked with zero or more ‘stripes’ (hence the
name). Stripes would simply be symbols; they have no intrinsic meaning. One
could thus retrieve all objects with the “point” stripe, or with the “fix me”
stripe, or with both the “window” and “fix me” stripes. When a copy of an
object is made, the copy will of course start with the same collection of stripes
possessed by the original. The user can subsequently add or delete stripes from
the copy.

We have also considered retrieval mechanisms that allow a variety of forms
of specification. The strongest candidate for usability is a graphical template-
based interface to support a broad range of retrieval requests. The template is
partially filled in, and objects that matched the template are retrieved (a blank
in a field matches anything). This is similar to query-by-example for databases.
The template might specify for example a list of stripes such that objects with
all of these stripes would be retrieved.

We consider Stripetalk to be somewhat radical in that sharing is not part
of the language semantics, yet mass updating is supported by the environment.
That all objects hold their own state and behaviour is, we consider, closer to
the way objects exist in the real world. Since one of the claims for the benefits
of object-oriented languages is that they are easier to use because they allow
people to deal with objects as they do in the real world, then this would appear
to be a significant advantage.

There were a number of arbitrary choices made in our language matrix for
Stripetalk: it should have a separate representation of protocol, and it should
support delegation and assignment.

4.2 Prototalk+Workbench

Prototalk+Workbench again uses prototypes. To support updating, the envi-
ronment maintains a programmer’s workbench database of where objects and
methods come from. Thus if an object B is created by copying A, this is in the
database. Similarly if method M2 is produced by copying method M1, this is
recorded as well. (These links are permanent.)

When the user edits a method he or she is queried as to whether or not
copies of that method should also be updated. The choices are:

11



• don’t update any copies

• update all copies without asking

• ask

Choosing the “ask” option gives breadth-first enumeration of copies. For
each copy, the choices are:

• update this copy and keep asking

• update this copy and all copies of it without asking any more

• don’t update this copy; keep asking

• don’t update this copy; stop asking for copies of it.

If a new method is added to or deleted from an object, the user is asked in a
similar fashion whether to add or delete the corresponding method from copies
of the object.

Access to overridden inherited methods is handled by the boxed-code ap-
proach. This seems to be the most logical choice for this language, since it fits
in well with the programmer’s workbench database — the idea of the workbench
is to provide environmental support for identifying and updating portions of the
code that determines an object’s behaviour.

Arbitrary choices for Prototalk+Workbench are: separate representation of
protocol, support for delegation, and no assignment.

4.3 Delegationtalk

This language uses prototypes. Shared prototypes and delegation are used for
mass updating, and to handle access to overridden inherited methods. This may
be thought of as Lieberman’s (1986) language, translated into Smalltalk syntax.

4.4 Sharetalk

This is a minimal-change approach to introducing prototypes. Prototypes rather
than classes are used, but objects are not completely self-contained. Rather, the
behavioural portions are explicitly shared and updated, and come in hierarchies
(like classes). So this ends up similar to Deltatalk, but using prototypes rather
than classes.

12



4.5 CLOStalk

CLOS, being an embedded language, is very different in syntax from the other
languages, making experimental comparison perhaps more difficult. However,
it is possible to design a language variant with a Smalltalk-like syntax but that
uses CLOS’s approach to object creation, which — unlike Smalltalk — allows
easy initialisation of new objects, without having to create a separate meta-
class for each class. In CLOStalk, then, there are still classes and metaclasses.
However, at least as far as beginners are concerned, all classes have the same
protocol. To handle initialisation, the message “new” takes an optional list of
keyword-parameter pairs. This list is passed on to the newly created instance
for initialisation. For example, if we write

Point new x: 10 y: 20

we are sending the message “new” to the class Point with arguments “x: 10
y: 20”. This pair of arguments can then be passed on to the new instance of
Point as arguments to an “initialise” message.

5 Discussion

The most interesting consequences for understandability appear to flow from the
decision to use prototypes rather than classes. Both our prototype-based de-
signs seems promising. Stripetalk is in the ‘shock-a-Smalltalk-wizard’ category:
simple, distinctly different from existing languages, and not easy to evaluate
at present. In Stripetalk the set of objects retrieved for updating is arbitrary
and under user control. In contrast, in Prototalk+Workbench the set of objects
retrieved is rigidly specified (by ancestry).

This rigid specification in Prototalk+Workbench is ideologically pure, but
will not be accepted by expert users, since it fixes the updating links once and
for all. A better scheme for experts would be to have explicit behavioural depen-
dence links in the database. These would start out the same as the original-copy
links but could later be changed as the system evolves. One could also cut the
links if one wanted to make independent objects.

What are the conditions of easy understandability in an object-oriented pro-
gramming system? At present, of course, we have few grounds on which to
make predictions. Typical criteria that are discussed from the armchair include
the following.

• Concepts to be acquired gradually. Smalltalk requires learners to tackle
the concept of ‘class’ before doing anything else much, and require the
concept of ‘metaclass’ at an early stage of learning. Our feature set of-
fers two alternatives design decisions: the learning of metaclasses can be
postponed if CLOS-like initialisation is used; and classes themselves can
be avoided if prototypes are used.

13



• Difficult concepts to be avoided. Present evidence singles out the metaclass
as a prime example of a difficult concept (O’Shea, 1986).

• Fewer concepts to be learnt. This criterion (also termed ‘brute elegance’)
is extremely important, yet it is hard to assess in a particular case. For
instance, it is not clear whether the prototype-based schemes will turn out
to ask more or less of learners than the class-based schemes. The ideas
built into the language are fewer, but to compensate, they will have to
learn to use the environmental tools more effectively. A lot will depend
on investigating the possibilities for mass update and browsing.

• Premature commitment to be avoided during design. A characteristic of
certain programming languages is the need to make decisions before the
programmer is ready to do so. This has been noted in the case of Smalltalk
by Goldstein and Bobrow (1981) whose PIE environment attempts to allow
incremental, coordinated design of object hierarchies. We believe that the
prototype-based systems may be another route to this goal.

Which of these criteria are genuinely important and yet also practicable?
How should a language designer choose between one ideal and another? Our
hope is that by investigating the consequences of a wide range of design deci-
sions in the manner we have described, we shall be able to report that certain
conditions must be met while others have less impact.

Acknowledgements

Many thanks to Rank Xerox EuroPARC to providing the environment in which
these ideas could initially be developed, and for agreeing to allow this paper to
be published years later.

References

Black, A., Hutchinson, N.C., Jul, E. and Levy, H. (1986) Object structure
in the Emerald System. Proc. OOPSLA 1986 Conference on Object-Oriented
Programming Systems. New York: ACM.

Bobrow, D.G. and Goldstein, I. (1981) An experimental description-based
programming environment: four reports. Technical Report CSL-81-3. Xerox
Palo Alto Research Center, Palo Alto, California.

Bobrow, D.G., DeMichiel, L.G., Gabriel, R.P., Keene, S., Kiczales, G. and
Moon, D.A. (1987) Common Lisp object system specification. ANSI X3J13,
Document 87-002, American National Standards Institute. Washington D.C.

Borning, A. (1986) Classes versus prototypes in object-oriented languages.
Proc. Fall Joint Computer Conference, ACM/IEEE, November 1986.

14



Borning, A. and O’Shea, T. (1987) Deltatalk: an empirically and aesthet-
ically motivated simplification of the Smalltalk-80 language. Proc. ECOOP
1987, European Conference on Object-Oriented Programming.

Fischer, G., & Lemke, A.C. Construction Kits and Design Environments:
Steps Toward Human Problem-Domain Communication. Human-Computer In-
teraction, vol. 3 no. 3 (1987-1988) pp 179-222, Lawrence Erlbaum Associates,
Hillsdale, NJ, USA.

Gilmore, D.G. (1986) Structural visibility and program comprehension. Peo-
ple and Computers; designing for usability. Proc. 2nd. Conf. British Computer
Society Human Computer Interaction Special Interest Group. University of
York, September 1986.

Graube, N. (1988) Reflexive architecture: from ObjVLisp to CLOS. Proc.
ECOOP 1988, European Conference on Object-Oriented Programming, pp 110-
127.

Hutchinson, N.C. (1987) Emerald: an object-based language for distributed
programming. Ph.D. thesis, University of Washington.

Kaehler, T. and Patterson, D. (1986) A taste of Smalltalk. New York: Nor-
ton.

Lieberman, H. (1986) Using prototypical objects to implement shared be-
haviour in object-oriented systems. Proc. OOPSLA 1986 Conference on Object-
Oriented Programming Systems. New York: ACM.

Olson, G. M., Sheppard, S. and Soloway, E. Empirical studies of program-
mers: second workshop. Ablex.

O’Shea, T. (1986) Why object-oriented systems are hard to learn. Proc.
OOPSLA 1986 Conference on Object-Oriented Programming Systems. New
York: ACM.

Payne, S., Chesworth, L., Waterson, P. and Hill, E. (in preparation) Display
animation as an orientation for exploratory learning.

Pinson, L. J. and Wiener, R. S. (1988) An introduction to object-oriented
programming and Smalltalk. Reading, Mass.: Addison-Wesley.

Schaffert, C., Cooper, T., Bullis, B., Kilian, M., Wilpolt, C. (1986) An in-
troduction to Trellis/Owl. Proc. OOPSLA 1986 Conference on Object-Oriented
Programming Systems. New York: ACM.

Soloway, E. and Ehrlich, K. (1984) Empirical studies of programming knowl-
edge. IEEE Trans. on Software Engineering, vol. SE-10, no. 5, September 1984.

Soloway, E. and Iyengar, S. (1986) Empirical studies of programmers. Ablex.
Ungar, D. and Smith, R.B. (1987) Self: the power of simplicity. Proc. OOP-

SLA 1987 Conference on Object-Oriented Programming Systems. New York:
ACM.

Wegner, P. (1987) Dimensions of object-based language design. Proc. OOP-
SLA 1987 Conference on Object-Oriented Programming Systems. New York:
ACM.

15


