Skip to content

Computing + Biology

When imagining the future of technology, sometimes all we need to do is look out the window — or into a microscope.

Our researchers take inspiration from nature to redefine what a computer can be, from data storage using synthetic DNA, to sensors modeled on insects and leaves. We also advance technologies to help solve biology’s biggest mysteries, such as computational approaches for understanding the mechanisms of disease and brain-computer interfaces that can restore or augment physical function and mobility.


Research Groups & Labs

Vials of DNA samples being prepared for genetic sequencing

Mostafavi Lab

The Mostafavi Lab develops machine learning and statistical methods that combine evidence across multiple types of molecular/genomics data and disentangle spurious from meaningful correlations for new insights into mechanisms of health and disease.

Closeup of a person's finger illuminated in red by smartphone camera

UbiComp Lab

The Ubiquitous Computing (UbiComp) Lab develops innovative systems for health sensing, low-power sensing, energy sensing, activity recognition and novel user interface technology for real-world applications.


Faculty Members

Faculty

Faculty


Centers & Initiatives

Computing for the Environment (CS4Env) at the University of Washington supports novel collaborations across the broad fields of environmental sciences and computer science & engineering. The initiative engages environmental scientists and engineers, computer scientists and engineers, and data scientists in using advanced technologies, methodologies and computing resources to accelerate research that addresses pressing societal challenges related to climate change, pollution, biodiversity and more.

Society + Technology is a cross-campus, cross-disciplinary initiative and community at the University of Washington that is dedicated to research, teaching and learning focused on the social, societal and justice dimensions of technology.

Highlights


GeekWire

A team co-led by Allen School professor Sheng Wang and Ph.D. alum Hoifung Poon unveiled GigaTIME, a multimodal model for generating detailed data on cancer progression and immune response from standard pathology slides — at a fraction of the time and cost of prior methods.

Allen School News

From a robotic arm that learns to pick up new objects in real time, to a model that converts 2D videos into 3D virtual reality, to a curious chatbot that adapts to users, to machine learning methods for decoding the brain, the 2025 Research Showcase and Open House had something for everyone.

UW News

In an article in Nature Reviews Bioengineering, members of the AIMS Lab led by Allen School professor Su-In Lee discuss how explainable AI techniques are essential for ensuring accuracy and trust in AI models used in clinical settings.