Brick and Mortar Silicon Manufacturing

Martha Kim, Mark Oskin
University of Washington

Industrial Affiliates Meeting
October 30, 2007
Declining ASIC Starts

11,000
10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000
0

Brick and Mortar Chips

1. Bricks
 - Mass-produced ASICs
 - Standard interface
 - Fixed set of functions
Brick and Mortar Chips

1. Bricks

- Mass-produced ASICs
- Standard interface
- Fixed set of functions
Brick and Mortar Chips

1. Bricks
 - Mass-produced ASICs
 - Standard interface
 - Fixed set of functions

2. “Mortar”
 - Mass-produced ASIC
 - Standard interface
 - Single, interconnect function
Brick and Mortar Chips

1. Bricks
 - Mass-produced ASICs
 - Standard interface
 - Fixed set of functions

2. “Mortar”
 - Mass-produced ASIC
 - Standard interface
 - Single, interconnect function

3. Assembly
 - Alignment
 - e.g. robotics, fluidic
 - Bonding
 - e.g. flip-chip, proximity
Brick Size

<table>
<thead>
<tr>
<th>Function</th>
<th>Area (um²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 1.1 Physical Layer</td>
<td>2,201</td>
</tr>
<tr>
<td>JPEG Decoder</td>
<td>625,457</td>
</tr>
<tr>
<td>RISC Core + 256K Cache</td>
<td>3,111,025</td>
</tr>
</tbody>
</table>
Interconnect Design

Packet-Switched	Reconfigurable Wires
Topology | 4-way fat tree per 4mm², mesh between roots | 20 fully-, 64-partially-configurable switches per 0.25 mm²
Pct. of 64mm² die | 43% | 57%
Performance | 64-bit packets, 800MHz | N/A
Bisecting bandwidth | 3.3 Tbps | 0.26 Tbps fully-, 0.8 Tbps partially-switchable
Interconnect Design

<table>
<thead>
<tr>
<th></th>
<th>Packet-Switched</th>
<th>Reconfigurable Wires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>4-way fat tree per 4mm², mesh between roots</td>
<td>20 fully-, 64-partially-configurable switches per 0.25 mm²</td>
</tr>
<tr>
<td>Pct. of 64mm² die</td>
<td>43%</td>
<td>57%</td>
</tr>
<tr>
<td>Performance</td>
<td>64-bit packets, 800MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>Bisetcion bandwidth</td>
<td>3.3 Tbps</td>
<td>0.26 Tbps fully-, 0.8 Tbps partially-switchable</td>
</tr>
</tbody>
</table>
Brick and Mortar Chips

1. Bricks
- Mass-produced ASICs
- Standard interface
- Fixed set of functions

2. “Mortar”
- Mass-produced ASIC
- Standard interface
- Single, interconnect function

3. Assembly
- Alignment
- e.g. robotics, fluidic
- Bonding
- e.g. flip-chip, proximity
Alignment: Fluidic Self-Assembly

- Template - brick communication via proximity communication
 - Brick type check, BIST, speed grade
- Polymer on template can grip or eject bricks
Alignment: Fluidic Self-Assembly

- Washington EE experimental system

Courtesy: Karl Bohringer
Assembly Time v. Kinds of Bricks

![Graph showing the relationship between assembly time and the number of kinds of bricks. The x-axis represents the number of kinds of bricks, while the y-axis represents the seconds per chip. The graph shows a clear upward trend, indicating that assembly time increases with the number of kinds of bricks.]
Assembly Time v. Kinds of Bricks

[Graph showing the relationship between number of kinds of bricks and assembly time.]
Assembly Time v. Brick Placement Slack

![Graph showing the relationship between assembly time and slack in brick arrangement.](image)
Conclusion

Brick and Mortar process offers ASIC-like chips without the masks and fabs

Architecture is crucial to meet the performance goals of the process

With low-cost assembly techniques, can meet the economic goal as well
Thank you