Multi-way versus One-way Constraints in User Interfaces: Experience with the DeltaBlue Algorithm

Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning

Technical Report 92-07-05a
Dept. of Computer Science and Engineering
University of Washington
May 1993

Abstract

The efficient satisfaction of constraints is essential to the performance of constraint-based user interfaces. In the past, most constraint-based user interfaces have used one-way rather than multi-way constraints because of a widespread belief that one-way constraints were more efficient. In this paper we argue that many user interface construction problems are handled more naturally and elegantly by multi-way constraints than by one-way constraints. We present pseudocode for an incremental multi-way constraint satisfaction algorithm, DeltaBlue, and describe experience in using the algorithm in two user interface toolkits. Finally, we provide performance figures demonstrating that multi-way constraint solvers can be entirely competitive in performance with one-way constraint solvers.

This is a preprint of a paper that will appear in the journal Software—Practice and Experience in 1993. It is a slightly revised version of Technical Report 92-07-05, July 1992.
1 Introduction

A constraint describes a relationship that should be maintained, for example, that the equality $A + B = C$ hold among three numbers. In user interfaces, constraints can be used to maintain consistency between application data and a display of that data, to maintain consistency among multiple views of data, to maintain layout relationships among graphical objects, and to compose complex user interface components from simpler ones [3, 31]. Giving the system responsibility for maintaining the various relationships in a user interface frees the programmer from the tedious and error-prone task of maintaining these relationships by hand, making it faster to develop complex graphical user interfaces.

In this paper, we focus on solving systems of constraints using local propagation. In this technique, some constraint is used to determine the value for a variable. Once this variable's value is known, the system may be able to use another constraint to find a value for another variable, and so forth. To support local propagation, the object representing a constraint includes one or more pieces of code (methods). Each method is a function whose arguments are input variables, and that calculates a value for an output variable that will satisfy the constraint. For example, the constraint $A + B = C$ would, in general, include three methods: $C = A + B$, $A = C - B$, and $B = C - A$. If the value of A or B were changed, the constraint solver could maintain the constraint by executing the first method to calculate a new value for C. If C were also constrained by $C + D = E$, then one of this other constraint's methods $(E - C + D)$ could be executed, and this process would continue until the change had propagated through the network of constrained variables.

Local propagation solvers cannot solve all possible sets of constraints, for example, those involving simultaneous equations. However, local propagation solvers have the advantage that they are efficient and very general—in particular, such solvers can handle non-numeric constraints—since the code defining a method can perform an arbitrary side-effect-free computation. For example, in a user interface system one might want to maintain the relationship between a string naming a font, and the object representing the font. The methods representing this constraint could call system functions for scanning font directories and reading in font definitions, in order to create a new font object that corresponds to a given font name string.

One significant difference among local propagation solvers is whether they allow multi-way constraints, or merely one-way constraints. A one-way constraint has a single method for maintaining that constraint, which calculates a new value for a single output variable. Satisfying one-way constraints is easy if there are no circularities in the constraint network: the obvious algorithm is to update the output variable of a constraint when any of its inputs changes. Most spreadsheets support this form of one-way constraint. A multi-way constraint will in general have a method for calculating a value for each of the variables it constrains, in terms of the values of the other variables.

Multi-way constraints have a number of advantages over one-way ones. First, any one-way constraint can be represented as a multi-way constraint with all but one of its variables annotated as read-only (as we will show later), so multi-way constraints are more general. Second, when a variable value is changed, a multi-way constraint satisifier often has a choice of which methods to use to propagate the change. This choice can be used to satisfy constraints in situations where one-way constraint solvers would be stymied. Third, and most importantly, multi-way constraints provide a clearer and more uniform way to specify relationships than one-way constraints. On the other hand, it may be more difficult to predict and control the behavior of a network of multi-way constraints.

We believe that, for many applications, the greater expressive power of multi-way constraints justifies the additional complexity.

Designers of user interface frameworks have often employed one-way constraints because they believe that solvers restricted to one-way constraint systems are adequate for user interface toolkits, that multi-way constraint systems are too difficult to implement, or that multi-way constraint
systems are not efficient. We claim these beliefs are erroneous, and in the remainder of the paper we argue that:

- Multi-way constraints are significantly more powerful than one-way systems. Certain practical problems in user interface construction are handled more naturally and elegantly by multi-way constraints than by one-way constraints.

- Local propagation solvers for multi-way constraints are not difficult to implement. We present pseudocode for the DeltaBlue multi-way constraint satisfaction algorithm, which has been successfully implemented in several different languages, both by ourselves and other researchers, and used in a number of research and commercial applications.

- Local propagation solvers for multi-way constraints can be implemented efficiently. DeltaBlue has excellent performance in both theory and practice. We describe the results of several benchmark programs, as well as performance figures from real user interfaces constructed using DeltaBlue. Choosing a one-way constraint satisfaction algorithm on grounds of efficiency is simply not supported by the facts.

2 Constraints and Constraint Solvers

It is important to distinguish between the declarative semantics of constraints and the algorithms for satisfying them. Declaratively, a constraint is simply a relation over some domain. For user interface applications, it is useful to express constraints over the union of a number of subdomains, including the real numbers, strings, booleans, and bitmaps.

There is a large body of work applying constraints in different domains. Constraints have been applied to geometric layout in drawing programs including COOL [29], IDEAL [47], the IntelliDraw program from Aldus Corporation, Juno [36], Magritte [20], the celebrated Sketchpad system [44], and ThingLab I [2].

Constraints have been used in a fair number of user interfaces and user interface construction systems, including Animus [10], the Cactus statistics exploration environment [33], the Constraint Window System (CWS) [12], Coral [45], Fabrik [26], the FilterBrowser user interface construction tool [11], Garnet [35], GITS [37], GROW [1], Peridot [34], Picasso [38], RENDEZVOUS [21, 22], the RTL/CRTL tiled window layout system [7], and ThingLab II [31, 32].

Finally, researchers have developed several general-purpose languages that use constraints, including Bertrand [30], Kaleidoscope [14, 18], SIRI [23, 24], as well as a number of languages integrating constraints with logic programming including CAL [42], CHIP [9, 46], CLP(R) [27, 28], CLP(\Sigma*) [48], HCLP(R) [6, 49], Prolog III [8], and the cc (concurrent constraint) languages [41, 40].

2.1 Refinement versus Perturbation

We can roughly classify constraint-based languages and systems as using one of two approaches: the refinement model or the perturbation model. In both cases constraints restrict the values that variables may take on. In the refinement model, variables are initially unconstrained; constraints are added as the computation unfolds, progressively refining the permissible values of the variables. This approach has been more or less universally adopted by the logic programming community in the languages integrating constraints with logic programming cited above.

In contrast, in the perturbation model, at the beginning of an execution cycle variables have specific values associated with them that satisfy the constraints. The value of one or more variables is perturbed by some outside influence, such as an edit request from the user, and the task of the
constraint solver is to adjust the values of the variables so that the constraints are again satisfied. The perturbation model has often been used in constraint-based applications such as the interactive graphics systems cited above, and in spreadsheets. The DeltaBlue algorithm presented in this paper is based on the perturbation model.

Several features of the perturbation model make it more attractive for developing user interfaces. First, it better matches the semantics of the domain: variables in a typical user interface application do have specific values associated with them, which are then perturbed by some outside influence. Indeed, not restricting variables to have a unique value (as is generally allowed in the refinement model) would not be suitable for e.g. an interactive graphics application in which a line must be displayed at a specific location. Second, systems based on the perturbation model usually allow adding and removing constraints in any order. Constraint-based logic programming languages typically only allow removing constraints during backtracking. Neither of these problems is insurmountable, however, and some work has been done on implementing user interfaces in systems using the refinement model [49].

2.2 Constraint Hierarchies

For constraint systems that are restricted to non-circular, one-way constraints, when a variable value is perturbed, it is clear how to compute new values for the variables so that all the constraints are again satisfied. However, if the constraints are multi-way, or if there are cycles in the constraint graph, there may be many ways to update the current state so that the constraints are again satisfied. As a trivial example, suppose we have a constraint \(A + B = C \), and edit the value of \(A \). Should we change just \(B \), change just \(C \), change both \(B \) and \(C \), undo the change to \(A \), or what?

Earlier systems used a variety of heuristics in making this decision. In ThingLab I [2] the local propagation methods of a constraint were ordered to indicate which ones should be used in preference to others. In Magritte [20], the system performed a breadth-first search to change as few variables as possible. However, none of these methods was entirely satisfactory: sometimes they gave counter-intuitive solutions. Worse, it was difficult to specify declaratively which solutions were preferred, and to alter these preferences, since the heuristics were buried in the procedural code of the satisfier.

Constraint hierarchies were originally devised to solve the problem of specifying declaratively what to change when perturbing a constraint system. In a constraint hierarchy, the programmer or user can state both required and preferential constraints. The required constraints must hold. The system should try to satisfy the preferential constraints if possible, but no error condition arises if it can’t. There may be multiple levels of preferential constraints, each successive level being more weakly preferred than the previous one. By using preferential stay constraints to indicate which variables should not be changed, it is possible to specify declaratively which of many possible solutions is most preferred.

Constraint hierarchies have other applications as well, for example in planning and scheduling. If all of the specified constraints cannot be satisfied, different constraints can be placed at different preference levels to specify trade-offs between which constraints should be enforced. Weak constraints can be used to specify default relationships, which can be overridden by adding stronger constraints.

A complete discussion of a theory of constraint hierarchies is given in reference [5], with preliminary versions in references [6, 4], and an alternative formulation in reference [18]. Briefly, a labeled constraint is a constraint labeled with a strength, written \(sc \), where \(s \) is a strength and \(c \) is a constraint. These strengths are mapped onto the integers \(0 \ldots n \), where \(n \) is the number of non-required levels. Strength 0, with the symbolic name required, is always reserved for required constraints.

A constraint hierarchy is a set of labeled constraints. Given a constraint hierarchy \(H \), \(H_k \) denotes the required constraints in \(H \), with their labels removed. In the same way, we define the sets \(H_1, H_2, \ldots, H_n \) for levels 1, 2, \ldots, \(n \). We also define \(H_k = \emptyset \) for \(k > n \).
A solution to a constraint hierarchy H is a valuation for the free variables in H, i.e., a function that maps the free variables in H to elements in the domain D. We wish to define the set S of all solutions to H. Clearly, each valuation in S must be such that, after it is applied, all the required constraints hold. In addition, we desire each valuation in S to be such that it satisfies the non-required constraints as well as possible, respecting their relative strengths. To formalize this desire, we first define the set S_0 of valuations such that all the H_0 constraints hold. Then, using S_0, we define the desired set S by eliminating all potential valuations that are worse than some other potential valuation using the comparator predicate better. In the definition, $c\theta$ denotes the Boolean result of applying the valuation θ to c, and we say that “$c\theta$ holds” if $c\theta = true$.

$$S_0 \ = \ \{ \theta \mid \forall c \in H_0 \ c\theta \ \text{holds} \}$$

$$S \ = \ \{ \theta \mid \theta \in S_0 \land \forall \sigma \in S_0 \ \neg \text{better}(\sigma, \theta, H) \}$$

The references listed above define several useful comparators. In the work described here, we use the locally-predicate-better comparator. This comparator considers each constraint in H individually, and only concerns itself with whether or not a given constraint is satisfied or not, rather than how nearly satisfied it is. Informally, a valuation θ is locally-predicate-better than another valuation σ if θ does exactly as well as σ in satisfying the constraints through some level $k - 1$ in the hierarchy, and strictly better at level k. More formally:

$$\text{locally-predicate-better}(\theta, \sigma, H) \equiv$$

$$\exists k > 0 \ \text{such that}$$

$$\forall i \in \ldots \forall p \in H_i \ c(p\theta) = c(p\sigma)$$

$$\land \exists q \in H_k \ c(q\theta) < c(q\sigma)$$

$$\land \forall r \in H_k \ c(r\theta) \leq c(r\sigma)$$

where $c(c\theta) = 0$ if $c\theta$ holds, 1 otherwise

For an example of solving constraints using a locally-predicate-better comparator, consider implementing the $A + B = C$ example within a constraint hierarchy with strength levels required, strong, medium, and weak. Suppose we defined a hierarchy with a required constraint $A + B = C$, medium stay constraints that A and B remain unchanged, and a weak stay constraint that C remain the same. Given this hierarchy, if we change A by adding a strong constraint to set its value, the system will change C (overriding a weak stay) rather than changing B (overriding a medium stay) to re-satisfy the constraints.

The locally-predicate-better comparator may produce multiple solutions. For example, if C was constrained by a medium stay constraints instead of a weak one, then changing A would cause either B or C to be changed. Neither of these two solutions is better than the other, according to the locally-predicate-better comparator.

2.3 Read-only Annotations

In general, a constraint can be used to determine a value for any of the variables it constrains. However, the constraint model can be extended to allow variables to be annotated as read-only, specifying that the constraint should not be used to determine a value for the variables annotated
as read-only. For example, in the constraint $C = A? + B?$, A and B have both been annotated as read-only, so that the satisfier may only change C to satisfy this constraint. The annotations are specific to this constraint, rather than to the variables, so that other constraints could cause A to be changed. A declarative semantics for read-only annotations is given in reference [5].

3 Multi-way versus One-way Constraints

In this section, we will compare multi-way and one-way constraints, and argue that certain practical problems in user interface construction are handled more elegantly by multi-way constraints than by one-way constraints.

A one-way constraint system can easily be simulated by a multi-way one. For each one-way constraint, we create a corresponding multi-way constraint, with all but one of its variables annotated as read-only. This simulation is satisfactory both from the point of view of the declarative theory, and as an implementation technique.

The reverse simulation also works from the point of view of the declarative theory. For each multi-way constraint, we create a bundle of one-way constraints, one for each variable that isn’t annotated as read-only. For example, the multi-way constraint $A + B = C$ would be simulated by a bundle of three one-way constraints: $C \leftarrow A + B$, $A \leftarrow C - B$, and $B \leftarrow C - A$. On the other hand, the multi-way constraint $A + B = C$ would be simulated by two one-way constraints: $A \leftarrow C - B$ and $B \leftarrow C - A$. The one-way constraint $C = A + B$ would not be included, because C was annotated as read-only in the original multi-way constraint.

Whether this simulation is also satisfactory as an implementation technique depends on the power of the one-way constraint solver being used. The simulation introduces large numbers of cycles in the graph of one-way constraints, even when the original multi-way constraint graph is acyclic. For example, there is a cycle in the networks of one-way constraints in both of the above examples. Some one-way solvers don’t allow cycles; in this case, the multi-way system is clearly strictly more powerful. Other one-way solvers do allow cycles, and handle them by a variety of techniques. Garnet [35], Fabrik [26], RENDEZVOUS [21, 22], and Hudson’s incremental attribute evaluation algorithm [23] all use the “once around the loop” technique, in which updated values are propagated through a cyclic network of one-way constraints until the loop is closed. This gives correct answers in many cases, but can result in some constraints being left unsatisfied.

It is possible for a network of multi-way constraints to be underconstrained (with multiple valid solutions) or overconstrained (with no valid solution). When a constraint network has multiple solutions, it may be difficult to predict and control which solution is chosen. One approach to this problem is to display the multiple solutions, and allow the user to select one [17]. Another approach is to use preferential constraints within a constraint hierarchy to specify declaratively a preference for one solution over another. Multiple solutions are not a problem with the simplest type of one-way constraint system, which allow at most one constraint to output to a given variable, since there will always be exactly one possible solution. However, more powerful one-way constraint systems, which support defining multiple constraints that output to the same variable, must choose which constraint to enforce, leading to similar problems with predictability.

If a one-way solver can handle cycles correctly, and allows defining multiple constraints that output to the same variable, then the argument for multi-way constraints is a software engineering one. It is clearer and more straightforward to represent what is conceptually a single relationship by a single object in the implementation, rather than by many. When specifying a multi-directional relationship with multiple one-way constraints, one has to be sure that the multiple constraints are all set up together, and their methods are defined consistently. If the one-way constraints are defined in separate places, coordinating these constraints can be a major software engineering problem. One
could define a macro or function that, given a single multi-way constraint, produced the needed bundle of one-way constraints. It is probably most reasonable to regard this simply as a different implementation technique for multi-way constraints.

The addition of constraint hierarchies complicates the problem so that a planning step is essential to find correct solutions; blind firing of one-way constraints as soon as possible may lead to incorrect results. For example, consider the network of constraints in Figure 1, where round-cornered boxes represent variables and arcs represent constraints. This network contains a required constraint $A + B = C$, and two chains of required equality constraints starting from A and B, one terminating in a medium stay constraint and the other in a weak stay constraint. If a strong edit constraint is added to change the value of C, the solver should change the value of B rather than A, since the medium stay on A is stronger than the weak stay on B. A solver that blindly changed either A or B to satisfy the plus constraint would not be satisfactory. It is essential to perform a planning step, considering the strengths of constraints downstream of A and B, before actually changing any values. However, once planning becomes necessary, there is little point in using a one-way solver; a multi-way solver is equally straightforward.

3.1 A User Interface Example

To illustrate the tradeoffs between one-way and multi-way constraints in a user interface, consider an interactive data analysis system that generates various displays of data sets. Suppose that one wants to create a scatterplot showing a particular data set. This could be implemented by a set of one-way constraints between the numbers in the data set, and the positions of graphic symbols on a display screen. If the user changed the numbers in the data set, then the constraints would update the positions of the graphic symbols in the plot to show the changed information.

Suppose that the user also wants the capability of editing the data, by dragging the symbols on the screen, and having the data set updated to correspond to the changed plot. There are several ways that this could be handled using one-way constraints. (1) The dragging operation could explicitly change the data set rather than the symbols, and then the original one-way constraints would update the symbol positions. (2) During the dragging operation all of the one-way constraints from the data set to the plot symbols could be disabled, and another set of one-way constraints from the symbols to the data set could be enabled. (3) The one-way constraint system may support a cycle of two one-way constraints (data set to plot and plot to data set), selecting the correct one to enforce depending on whether the data set or the plot was being edited. All of these alternatives are more complicated to specify and maintain than using multi-way constraints to represent the two-way flow of information between the data set and the plot symbols.

To extend the example further, suppose that the user wants to display and modify multiple scatterplots of the same data set. Using multi-way constraints, each plot can be implemented
independently by setting up a set of multi-way constraints between the data set elements and the graphic symbols in the plot. Using one-way constraints to maintain consistency between all of the plots and the data set when any of the plots may be changed would be considerably more complicated. (Reference [39] discusses one way to implement scatterplots using multi-way constraints.)

The capability of having multiple editable displays of application data was used to good advantage in such systems as ThingLab I [2], Animus [10], ThingLab II [31, 32], and RENDEZVOUS [21, 22]. In both ThingLabs, for example, one could have multiple views of a numeric application variable, e.g. a textual display of the number and a bar chart. If the variable were changed by some other part of the application, both views would be updated; if either of the views were edited (by editing the text, or dragging the top of the bar with the mouse), the other view and the application variable would be changed as well. Similarly, in Animus, constraints were used to relate attributes of a simulated operating system with animations of those attributes. The animation was updated automatically as the simulation ran, but one could also grab a moving icon in flight, edit some attribute of it, and have the change reflected back to the simulation. This capability was used in tuning the performance of a real-time operating system prior to its use in a Tektronix product.

4 The DeltaBlue Algorithm

When building interactive user interfaces, the set of constraints changes frequently. It is thus useful to have an incremental constraint satisfaction algorithm, one that can take advantage of previous computations rather than starting over each time there is a change in the set of constraints. We have devised an efficient incremental algorithm, DeltaBlue, for satisfying hierarchies of multi-way constraints using local propagation.

Initially, the constraint hierarchy is empty. DeltaBlue is invoked by calling two procedures, AddConstraint to add a constraint to the current constraint hierarchy, and RemoveConstraint to remove a constraint from the hierarchy. As each constraint is added or removed from the hierarchy, DeltaBlue executes constraint methods to set the constrained variables to a locally-predicate-better solution of the constraint hierarchy. DeltaBlue is based on the perturbation model of constraint solvers, adjusting existing variable values to satisfy the constraints when the constraint hierarchy is changed.

DeltaBlue internally stores the current solution in the form of a solution graph, which describes how to recompute values for variables in order to satisfy all the satisfiable constraints. The key idea behind DeltaBlue is to associate extra information with the constrained variables so that the solution graph can be updated incrementally when a constraint is added or removed without examining, in general, more than a small fraction of the entire constraint hierarchy.

Figure 2 is a graphical depiction of a solution graph. The round-cornered boxes represent variables. The arcs represent constraints, labeled with their strengths. Arrows on the arcs show which methods are used, while dashed arcs indicate constraints that are unsatisfied. When a new constraint is added, the information associated with each variable can be used to decide incrementally which non-required constraints should be left unsatisfied and which method should be used to satisfy each satisfiable constraint. Figure 3 is a graphical depiction of the solution graph after adding a constraint to the solution graph in Figure 2.

DeltaBlue supports separate planning and execution stages. Given a constraint graph, the algorithm can construct a plan for re-satisfying the constraints. The plan can be used repeatedly, with different input values, until the constraint graph changes. This can yield substantial performance improvements if the input values change more frequently than does the constraint graph. This is the case, for example, when dragging a part of a figure with the mouse: new values of the mouse location arrive repeatedly, but the constraint graph only changes when the mouse button is pressed.
or released.

The DeltaBlue algorithm has two important restrictions. First, it cannot handle cycles of constraints. When DeltaBlue finds a cycle, it signals an error. For user interface construction, this is not necessarily a major restriction. While some one-way local propagation systems can handle cycles, in most cases these cycles are used to simulate the behavior of a multi-way constraint. Using multi-way constraints, we have been able to build complex user interfaces without using cycles of constraints. Second, DeltaBlue only handles methods with a single output variable. While methods with multiple output variables arise infrequently in user interfaces, when they are needed their absence is annoying. A more serious problem is that DeltaBlue’s inability to handle methods with multiple outputs limits its ability to interact with more powerful constraint solvers. Easing these restrictions is discussed in the section on future work.

The Appendix presents pseudocode for the DeltaBlue algorithm in enough detail to allow it to be easily implemented in a variety of languages. The algorithm was originally devised by Bjorn Freeman-Benson, and described in references [15] and [16], although in much less detail than given here. A substantial amount of the analysis in this paper is adapted from Maloney’s Ph.D. dissertation [31]. This dissertation also includes a proof that the DeltaBlue algorithm produces locally-predicate-better solutions to the constraint hierarchy.

4.1 DeltaBlue Constraints

Most DeltaBlue constraints are represented by a set of side-effect free methods that calculate the value of an output variable from the rest of the variables, with one method for each variable not
annotated as read-only. There are three types of constraints that are different: stay constraints, input constraints, and edit constraints.

A stay constraint specifies that a particular variable should not be changed. A stay constraint can be represented by a DeltaBlue constraint with a single method, with no inputs and one output. The method for a stay constraint actually doesn't do any computation. Unless the stay constraint is overridden, it acts as a marker preventing another constraint from changing the variable.

All variables implicitly have a stay constraint with the special weakest strength that is weaker than all of the other strengths. These constraints are virtual constraints: DeltaBlue behaves as if they exist, although they have no explicit representation and consume no resources.

An input constraint is used to introduce external data to the constraint graph. For example, a mouse input constraint would have a single method that reads the current position of the mouse pointer, and sets the specified variable to this value. Such constraint methods can be executed at predictable times by building and executing a plan, as described later.

Another way to introduce external data is through an edit constraint, defined by a method with no inputs that sets its output variable to a given constant value. In order to set a variable to a given value, one can add an appropriate edit constraint to the constraint graph, and then remove it. If the edit constraint is strong enough, it will be satisfied, and the value will be propagated through the constraint graph.

4.2 Walkabout Strengths
When a constraint is added or removed from a constraint hierarchy, DeltaBlue modifies the solution graph. To achieve efficient performance, DeltaBlue considers each constraint at most once during each incremental operation, using only information local to a constraint when deciding how to enforce it. DeltaBlue does this by annotating every variable with an incrementally maintained value called the walkabout strength and choosing a method for a constraint based only on the walkabout strengths of that constraint's own variables.

The walkabout strength of a variable indicates the strength of the weakest constraint in the current solution graph that could be retracted (i.e., removed from the solution graph) to allow some other constraint to be enforced by changing that variable. The walkabout strength of a variable may reflect the existence of a constraint quite far away in the solution graph. This is precisely what makes walkabout strengths so useful: they encapsulate information that DeltaBlue would otherwise have to acquire by exploring the graph.

Definition. A variable is a potential output of a constraint \(C \) if it is the output of any method of \(C \). The potential outputs of a constraint are the set of variables that can be changed to enforce that constraint. Variables annotated as read-only aren't in the set of potential outputs.

Definition. Let \(V \) be a variable. The walkabout strength of \(V \) is defined as follows:

- If \(V \) is determined by constraint \(C \) in the current solution graph, its walkabout strength is the weaker of \(C \)'s strength and the weakest walkabout strength among all potential outputs of \(C \) except \(V \) itself.

- If \(V \) is not determined by any constraint, then its walkabout strength is weakest, because it is determined by an implicit stay constraint of strength weakest.

Consider the solution graph shown in Figure 4. The variables are labeled with their walkabout strengths. The current output of each constraint is indicated with an arrowhead and unenforced constraints are shown as dashed lines. Each constraint has a method to compute each of its variables.

The walkabout strengths of variables \(W \) and \(X \) are determined by their stay constraints. The walkabout strength of \(Y \) is the minimum of \(W \)'s walkabout strength, \(X \)'s walkabout strength, and
CI's strength. The walkabout strength of Z is weak because C2 is weak. The implicit weakest stay constraint on Z is not currently enforced, so it has no effect on any walkabout strength. Note that weak walkabout strengths propagate through stronger constraints (W to Y) but strong walkabout strengths do not propagate through weaker ones (Y to Z).

4.3 Planning and Stay Optimization

The constraint solution graph maintained by DeltaBlue describes how to recompute values for variables to satisfy all the satisifiable constraints. This graph can be topologically sorted to construct a plan—an ordered list of constraint methods. Executing the methods of this plan in sequence re-satisfies all constraints enforced by the solution graph (unless a run-time error is encountered while executing a method).

Many of the constraints in a typical constraint hierarchy are stay constraints whose only purpose is to indicate to DeltaBlue that a given variable should not change. Since these constraints do no actual computation, they may be omitted from the plan. Variables determined by enforced stay constraints will not change during plan execution. Such planning-time constants are the equivalent of compile-time constants in a program. Furthermore, variables computed exclusively from planning-time constants will also be planning-time constants. To make plan execution as fast as possible, DeltaBlue precomputes the values of all planning-time constants and omits the constraints that compute them from the plan. This is called stay optimization. Stay optimization can significantly reduce a plan's size and execution time.

DeltaBlue maintains a stay flag for each variable that is true when the variable is a planning time constant. The stay flag of a variable is updated whenever its walkabout strength is recomputed. A variable's stay flag is defined as follows:

- If the variable is determined by a stay constraint in the current solution graph, the stay flag is true.
- If the variable is determined by an input constraint, the stay flag is false.
- If the variable is determined by any other type of constraint C, the stay flag is true if and only if the stay flags of all inputs of the method used to enforce C are true.
- If the variable is not determined by any constraint, the stay flag is true. This reflects the fact that a variable that is not determined by any other constraint is considered to be determined by its implicit stay constraint of strength weakest.

When the stay flag for a variable becomes true, the variable value is precomputed by executing the selected method of the determining constraint. The values of the method inputs, if any, will have already been precomputed, since their stay flags are true.
If the constraint hierarchy consisted entirely of stay constraints and ordinary constraints, then every variable would be a planning-time constant and there would be nothing left to compute at plan execution time. However, input constraints, such as mouse constraints, depend on the outside world, so their outputs are never planning-time constants. Thus, if stay optimization is used, then only those methods downstream of input constraints need be extracted in the plan, and executed at plan execution time. Since these methods often represent just a small fraction of the overall solution graph, the time savings may be considerable.

4.4 Time Complexity

Given an acyclic constraint hierarchy, the worst-case performance of a single call to DeltaBlue's AddConstraint or RemoveConstraint procedures is $O(MN)$, where N is the total number of constraints in the hierarchy, and M is the maximum number of methods in a constraint. See reference [31] for more detailed analysis than given here.

For AddConstraint, in the best case the constraint cannot be enforced and the cost is just $O(M)$ to consider its M possible methods. In the worst case, every constraint in the hierarchy is retracted and reconsidered at a cost of $O(M)$ each, resulting in a total cost of $O(MN)$. An intermediate case occurs when no constraint is retracted, but the walkabout strength of every variable in the solution graph is updated. The cost is still $O(MN)$, but the constant is smaller. An average case would require a mixture of constraint retraction and walkabout strength recomputation involving only part of the solution graph.

For RemoveConstraint, the best case occurs when the constraint being removed is not enforced, in which case it can be removed from the hierarchy in constant time. In the worst case, the cost of computing new walkabout strengths for all variables downstream of the removed constraint and the cost of enforcing the strongest candidate constraint are both $O(MN)$, so the overall cost for removing a constraint is $O(MN)$. Reference [31] includes a proof that enforcing the strongest candidate constraint will result in a correct solution graph and, furthermore, that it will not be possible to enforce any additional candidates.

Although the worst case performance of DeltaBlue grows as $O(MN)$, in typical user interfaces the maximum number of methods per constraint M is bounded by a small constant $k << N$ (k is typically 3). Therefore, the cost of a given operation grows only linearly in the number of constraints, $O(N)$. In addition, the worst case behavior is exceptional in user interfaces; it is more common for an operation to involve only a small fraction of the constraint graph. All the DeltaBlue operations—incrementally adding and removing a constraint, extracting a plan, and executing that plan—have the same $O(N)$ worst case complexity, which makes the algorithm scale smoothly to handle large problems.

4.5 Creation Time and Space Requirements

The DeltaBlue algorithm was designed to add and remove single constraints efficiently from the constraint hierarchy during the operation of a constraint-based user interface. It is also appropriate to consider the time required to construct the constraint network when the user interface is initially created. DeltaBlue can be used to construct a constraint network by starting with an empty network, and adding each constraint in turn. Since adding a new constraint to a network with N constraints takes time $O(N)$ in the worst case, creating a network with N constraints could take $O(N^2)$ in the worst case.

The time to construct a constraint network can be dependent on the order that the constraints are added. For example, when constructing a long chain of equality constraints, it is possible to add the constraints in a particular order such that each AddConstraint operation causes values
and walkabout strengths to be propagated to all of the existing constrained variables, giving a total time of \(O(N^2) \). By adding the constraints in a different order, each \texttt{AddConstraint} operation only needs to propagate information to one or two variables, leading to a total time of \(O(N) \). The chain example is a pathological worst-case one. In our experience constructing user interfaces, we have found that the typical situation never approaches the worst-case time of \(O(N^2) \), and that the order of adding constraints is usually not important.

If excessive creation time is a concern, it is possible to create the constraint network without using the DeltaBlue algorithm. For example, given a large constraint network, it is possible to save the state of all of the constraints and variables, including information used by DeltaBlue such as variable walkabout strengths. Given this information, a new copy of the constraint network could be created quickly by allocating the DeltaBlue constraint and variable structures, and inserting the correct field values.

In our experience, the time for constructing large constraint networks is dominated by storage allocation operations as the DeltaBlue constraint and variable structures are created. In the C and Lisp versions of DeltaBlue, a single constraint takes around 100 bytes. The Smalltalk version uses 150-200 bytes per constraint. Particularly in benchmarks with tens of thousands of constraints, the DeltaBlue data structures may use a significant amount of memory. Memory management can become an important issue, particularly in a pointer-following algorithm like DeltaBlue that has very little locality of reference.

These size numbers could probably be reduced further through careful engineering. One method for reducing space, implemented in the Smalltalk version of DeltaBlue, is to use special optimized representations of common constraints, such as \(\text{stay}(X) \), \(A = B \), and \(A = B + K \) where \(K \) is a constant.

4.6 Implementing DeltaBlue

The process of implementing DeltaBlue is eased considerably by the availability of a detailed pseudocode description of the algorithm (see the Appendix). This pseudocode has been translated into a variety of target languages including C, C++, Smalltalk, Self, and several dialects of Lisp. C, Lisp, and Smalltalk implementations are available via anonymous ftp.

A typical time to complete and debug an implementation of DeltaBlue from the pseudocode is one to two person-weeks. In some cases, an additional week was required to tune the algorithm for optimal performance. For example, the C storage allocator on several platforms imposed an overhead that grew as the square of the number of constraints; to regain linear-time performance it was necessary to implement our own storage allocator. DeltaBlue has also been successfully implemented by independent researchers at DEC Paris Research Labs, Hewlett-Packard Labs, GMD (the German Computer Science Research Lab), Apple Computer, Data I/O, and Chronology Corporation, as well as elsewhere at the University of Washington.

DeltaBlue has been used extensively as part of the user interface toolkit ThingLab II [31, 32]. The user interface examples discussed below were all implemented in ThingLab II. We have also used a variant of DeltaBlue in another user interface toolkit: an extension to Garnet [35], a widely-used user interface toolkit based on one-way constraints. This experimental version of Garnet, called Multi-Garnet [39], has been developed as a base for further research on the use of multi-way constraints in user interface construction, as well as a platform for research on constraint debugging tools. It also serves as a demonstration that DeltaBlue can be integrated with a user interface system other than ThingLab II.
5 Performance Measurements

We have measured the performance of the DeltaBlue algorithm on a number of test cases. First, we measured a series of benchmarks using artificial "worst case" constraint hierarchies—those in which a single change to the hierarchy must propagate throughout the entire solution graph. These benchmarks demonstrate that DeltaBlue is extremely fast, even when the constraint hierarchy has been designed to eliminate any advantage gained by stay optimization. Second, we measured a number of real user interfaces that we have constructed using the ThingLab II system. Third, we measured a simple user-interface built in both Garnet and Multi-Garnet, to provide a direct comparison between two systems that are as similar as possible, except that one uses one-way constraints and the other uses multi-way constraints. These benchmarks demonstrate that multi-way constraints and the DeltaBlue algorithm are efficient enough to be used in user interface construction.

The artificial test cases were measured using C, Smalltalk-80, and Lisp implementations of the DeltaBlue algorithm; the realistic applications were written in ThingLab II, which is implemented in Smalltalk-80. Garnet is implemented in Lisp, and Multi-Garnet is build on top of Garnet. The measurements were made on a lightly loaded Sun Microsystems SPARCstation 2, using Gnu C (version 1.94.3), ParPlace Smalltalk (version 2.5), Allegro Common Lisp (version 4.0.1), Garnet (version 1.4), and Multi-Garnet (version 1.5).

When measuring the DeltaBlue benchmarks, and the ThingLab II user interfaces built on DeltaBlue, it is convenient to divide the times into two parts, the latency and the cycle time. The latency is the time required to add a constraint and extract a plan, which corresponds to the minimum time between a user action such as pressing a mouse button and the first visible response. The cycle time is the time required to execute the plan once, which corresponds to the minimum time to update graphical feedback during a continuous action such as moving a slider. In practice, the total latency and cycle time for a given user interface are often dominated by other factors, such as event processing, hit detection, and screen updating.

5.1 The Chain Benchmark

The chain benchmark involves adding a constraint on one end of a long chain of required bidirectional equality constraints: \(v_1 = v_2, v_2 = v_3, \ldots, v_{n-1} = v_n \). There is a weak stay constraint on \(v_n \) to ensure that the constraint methods initially propagate from \(v_n \) to \(v_1 \) (Figure 5(a)). Adding a strong input constraint to set \(v_1 \) reverses this flow completely (Figure 5(b)). Thus, every constraint in the chain must be examined when the new constraint is added. Similarly, a method from every constraint must be invoked to execute the plan, to propagate the new input value from \(v_1 \) to \(v_n \).

Figure 6 compares the performance of the chain benchmark for three different implementations of DeltaBlue, in C, Lisp, and Smalltalk. The C implementation is significantly faster than the
Smalltalk and Lisp versions, which are approximately the same speed. Note that the DeltaBlue algorithm can handle many thousands of constraints, and that its performance degrades linearly with the number of constraints in the chain.

Figure 7 compares the performance of the chain benchmark in Garnet and Multi-Garnet. Garnet does not support a hierarchy of constraint strengths, or explicitly create plans, so the benchmark had to be modified considerably. Specifically, the chain is constructed as a chain of objects, each containing previous and next slots pointing to its neighbors in the chain, and a value slot set by a formula (one-way constraint) accessing the value of the previous object’s value slot. The latency figures are derived by measuring the time to reverse all of the one-way constraints in the chain by switching the values of the next and previous slots in each object. The cycle time figures are derived by measuring the time to set the value slot of the object at one end of the chain (invalidating formulas all the way through the chain), and then access the value slot of the object at the other end (evaluating all of the formulas). For very long chains, the Garnet benchmark causes stack overflows; for this reason figures are not given for chains with 20,000 elements.

The Multi-Garnet version of the chain benchmark is similar to the Garnet version. The elements in the chain are represented by Garnet objects with previous, next, and value slots. However, each chain element has a single multi-way constraint, setting its value slot to the previous object’s value, or vice versa. Comparing the figures for the Lisp implementation of DeltaBlue in Figure 6 with the Multi-Garnet figures in Figure 7, the latency is about the same. This is to be expected, since most of the latency time is spent doing DeltaBlue operations, choosing new methods and constructing a plan. However, the Multi-Garnet cycle time figures are considerably higher than the Lisp ones. This is due to the high cost of accessing variable values stored in Garnet object slots, compared to accessing them as fields in the DeltaBlue variable record.

Comparing the Garnet and Multi-Garnet figures, the latency for Multi-Garnet is slightly higher than for Garnet, and the cycle time figures for Multi-Garnet are lower than for Garnet. The exact
figures are not too important here. The significance of these numbers is that Multi-Garnet, built on DeltaBlue, has comparable performance to Garnet with one-way formulas.

5.2 The Star Benchmark

The star benchmark adds an input constraint to a variable that is referenced by every constraint in a star-shaped network. Specifically, it adds an input constraint to variable s (the scale factor) used in a large number of required constraints: $m_i = d_i + s$ where the d_i are data points and the m_i are their images on the display. This network might be used in a viewer for statistical data in which a single scaling factor controls how each point in a data set is mapped to the display. Figure 8 shows the initial constraint network. Initially, the scale and the data points have weak stays to ensure that the image values are computed from them. When a strong input constraint is added to change the scale variable s, this overrides the weak stay on this variable, but otherwise the constraint solution graph doesn’t change.

Figure 9 compares the performance of the star benchmark for the C, Lisp, and Smalltalk implementations of DeltaBlue. The figures are comparable to those for the chain benchmark. This benchmark shows that one can use high-fanout variables, accessed by many constraints, without penalty.
Figure 10: Tree Benchmark Network

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\text{DeltaBlue (C)})</th>
<th>latency</th>
<th>cycle time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,024</td>
<td>17</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>4,096</td>
<td>17</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>16,384</td>
<td>18</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>65,536</td>
<td>19</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11: Tree Benchmark in DeltaBlue (milliseconds)

5.3 The Tree Benchmark

The tree benchmark adds an input constraint to the root of a complete binary tree of \textit{required} constraints, shown in Figure 10. Each constraint maintains the value of a node as the sum of the values of its children. The leaf nodes of the tree have \textit{weak} stays, so initially the constraint solution graph flows from the leaves towards the root node. For the benchmark, a \textit{strong} edit constraint is added to the root node, which causes the propagation path to one of the leaves to be reversed, overriding that leaf’s stay constraint.

Unlike the previous benchmarks, the tree benchmark is not a worst case benchmark; only the \(\log_2 N\) constraints along the path from the root to one of the leaves need to be changed. Therefore, both latency and cycle time for this benchmark are small, even for very large trees, as demonstrated by the numbers in Figure 11.

5.4 Measurements of Real User Interfaces

The following three subsections describe several real user interfaces implemented using the ThingLab II user interface construction system. ThingLab II is written in Smalltalk-80; Figure 6 can be used to predict how the constraint operation timings would change if ThingLab II were implemented in C or Common Lisp.

For each of these examples, Figure 12 displays the latency and cycle time measured when directly manipulating user interface elements such as buttons and sliders. These times are broken down into two components, constraint processing time and other time. The constraint processing time measures
Table 1: User Interface Latency and Cycle Times (milliseconds)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Widget</th>
<th>Latency constraints</th>
<th>Latency other</th>
<th>Cycle Time constraints</th>
<th>Cycle Time other</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Musical Instrument</td>
<td>Radio Buttons</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Slider</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Statistics Tool</td>
<td>Scale Slider</td>
<td>60</td>
<td>56</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>X-Offset Slider</td>
<td>32</td>
<td>63</td>
<td>8</td>
<td>34</td>
</tr>
<tr>
<td>(c) MacDraw</td>
<td>Dash Dragger</td>
<td>79</td>
<td>30</td>
<td>3</td>
<td>44</td>
</tr>
</tbody>
</table>

Figure 12: User Interface Latency and Cycle Times (milliseconds)

![Taesarewa Interface](image)

Figure 13: Musical Instrument Controller

DeltaBlue operations such as adding a constraint to the network and constructing or executing a plan. The other category measures additional processing necessary to implement the user interface. For the latency, this figure includes time to locate the object being manipulated, and precompute and cache parts of the graphical image, and for the cycle time this figure includes the time to update the screen.

5.5 A Musical Instrument Controller

Constraints were used in the construction of a real-time controller for African marimba music (Figure 13). The system allows controls to be manipulated while the music is being played. The sound
is generated by a synthesizer that is controlled by the program through a MIDI connection. Latency and cycle times for manipulating sliders and radio buttons are given in Figure 12(a). In both cases the contributions of constraints to the latency and cycle time are minor.

5.6 A Statistical Visualization Tool

Constraints were used to construct a prototype statistical data visualization tool (Figure 14). The tool allows two dimensions of a data set to be displayed as a point cloud. The user may use sliders to control the x and y offset and the scale factor. Latency and cycle times for manipulating these sliders are given in Figure 12(b), for a data set of 100 elements. These measurements reflect the fact that the scale factor influences both the x and y coordinate of every point, whereas the x-offset influences only their x coordinates.

5.7 A Dashed Lines Dialog Box

As an example of an existing user interface, we reimplemented the MacDraw II Dashed Lines dialog box using ThingLab II. This dialog box (Figure 15) is used to specify the pattern of black and white dashes that make up a dashed line. Dashes are created by dragging the spare dragger to the left from its resting position on the far right. Dashes are deleted by dragging the corresponding dragger to the far right edge.

In our reimplemention of the dialog box (Figure 16), these behaviors are implemented using constraints. There is an array of six dashes, each of which has a separately constrained isVisible attribute. A dash can only be manipulated when displayed, and is only displayed when isVisible is
true.

The original dialog box was implemented in approximately 360 lines of Object Pascal and took two to three person-weeks to write. More than half the implementation effort was spent dealing with unusual cases and manual enforcement of internal constraints [43]. Our reimplementations use fewer lines of code, and required only one day to implement and test. However, we note that only the tricky “dashes” portion of the dialog box was implemented; the various buttons and other frills were not. The latency and cycle times for manipulating the dashes are given in Figure 12(c). The performance is adequate for a user interface, even when implemented in Smalltalk.

5.8 A Simple Garnet Example

Demo-manyobjs is a Garnet demo program that creates a chain of boxes connected by lines. Formulas (one-way constraints) are used to set the endpoints of the lines to the centers of the two boxes being connected. The boxes can be dragged around by the mouse, and the lines redraw themselves appropriately. Several versions of this program were constructed to compare the performance of
Garnet to that of Multi-Garnet for a typical interactive graphics activity.

To measure performance, a chain of five boxes was positioned in a standard configuration (a simple vertical chain) and the left side of the second box was moved 500 times (Figure 17). Each time the box was moved, the window was updated, so the two lines connecting this box to its neighbors had to be redraw, evaluating the formulas or constraint methods to determine their new endpoints.

For the Multi-Garnet version of demo-manyobjs, the formulas used to set the endpoints of the lines were replaced with multi-way constraints. Two versions of demo-manyobjs were created using Multi-Garnet. The first version moved the box by setting a slot within the box object. Every time the slot was changed, Multi-Garnet temporarily added and removed a constraint to set and propagate the changed value. The second version constructed a plan explicitly, which was executed repeatedly to propagate the new value without requiring adding or removing any constraints.

Figure 18 presents the timings for these three versions. The difference between the timings for
the Garnet and Multi-Garnet (no plan) versions can be explained as the difference between lazy and eager evaluation. The Garnet version eagerly invalidates formulas, and evaluates the formulas when the display algorithm accesses the slot values, whereas the Multi-Garnet version uses eager evaluation to propagate changed variable values whenever they are changed. In this benchmark, all of the formulas or constraints are evaluated each time the box is moved, so Garnet’s lazy evaluation doesn’t prevent any evaluations. Indeed, it spends additional time invalidating formulas.

The difference between the timings for the two Multi-Garnet versions is due to DeltaBlue constraint manipulation, which is done every time the box is moved in the no-plan version, but is only done once in the version using plans, taking negligible time. This demonstrates that most of the time for the Multi-Garnet (no plan) version is devoted to propagating values and updating the graphics. This is a common case with interactive user interfaces built using constraints: the constraint manipulation time is dominated by other elements of the processing.

This benchmark does not use many constraints, the constraints are all one-way, and all of the constraints are required. Therefore, it is not a good example of the power of multi-way hierarchical constraints. However, this benchmark indicates that Multi-Garnet has comparable performance with Garnet for simple interactive tasks. In addition, if plans are reused, there is a potential for some speedup. However, some of the techniques responsible for the time difference between the Garnet and Multi-Garnet versions, such as eager evaluation and reusing plans, could just as easily be implemented in a system using one-way constraints.

<table>
<thead>
<tr>
<th>version</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnet</td>
<td>8628</td>
</tr>
<tr>
<td>Multi-Garnet (no plan)</td>
<td>7936</td>
</tr>
<tr>
<td>Multi-Garnet (plan)</td>
<td>7167</td>
</tr>
</tbody>
</table>

Figure 18: Garnet and Multi-Garnet Timings for Demo-Manyobjs (milliseconds)

5.9 Other Systems

Hudson describes an algorithm for incremental attribute evaluation [25], which can be viewed as one-way constraint propagation. For a system of evaluation rules hand-translated into C, running on a DECstation 3100, a long linear chain of rules could be evaluated at more than 40,000 attributes per second. Hudson’s benchmark is very similar to our chain of equalities benchmark.

Consider the time it takes to propagate a variable change through a chain of 40,000 trivial equality constraints. Using Hudson’s figure, and the timings in Figure 6 and Figure 7, we can roughly estimate that Hudson’s system (in C) would require about a second, whereas DeltaBlue (in C) would require approximately 0.83 second planning time plus 0.12 seconds execution time. Garnet (in Lisp) would require approximately 6.8 seconds, whereas DeltaBlue (in Lisp) would require approximately 6.6 seconds planning time plus 0.77 seconds execution time. Comparisons based on the figures for Hudson’s system must be made with caution, since the hardware and compilers are different. In any case, however, it should be clear that multi-way constraint satisfaction using DeltaBlue is entirely competitive with one-way constraint satisfaction.
6 Future Work

As described previously, DeltaBlue has two important restrictions: all methods must have exactly one output variable, and the constraint graph must be acyclic. These restrictions allow all of DeltaBlue’s operations—incrementally adding and removing a constraint, extracting a plan, and executing that plan—to have $O(NM)$ worst case complexity, so that the algorithm scales smoothly to handle large problems. References [31, 19] prove that removing either of these restrictions turns the constraint satisfaction problem into an NP-complete one, making the worst case running time exponential in the number of constraints.

While the restriction on methods with multiple outputs is not usually an obstacle, the occasional user interface problem does arise that could be expressed more elegantly using such methods. For example, suppose one has a point object that maintains its position as both (x, y) cartesian coordinates, in addition to (ρ, θ) polar coordinates. It would be convenient to specify a constraint that keeps the two representations consistent, using two methods each with multiple outputs: one setting x and y, the other setting ρ and θ.

More significantly, the single-output method restriction limits DeltaBlue’s ability to interface to a constraint compiler [13]. Suppose DeltaBlue could treat a subgraph of the constraint graph (e.g., one containing simultaneous equations) as a black box. Then a more powerful constraint solver, one capable of solving simultaneous equations, could be called to find a solution for this subgraph. The solution would, in general, treat some of the variables at the boundary of the subgraph as independent variables, using their values to compute values for the remaining boundary variables. A constraint compiler could be used to compile a number of methods to solve the subgraph for various combinations of independent variables, and DeltaBlue could simply choose the appropriate compiled method. However, this solution technique produces methods with multiple outputs, which DeltaBlue cannot handle.

We are currently working on a successor to DeltaBlue, named SkyBlue, that supports constraints with multiple outputs. Our preliminary results with SkyBlue seem to indicate that the new algorithm is exponential only in the number of constraints with multiple outputs, not the total number of constraints. We therefore hypothesize that this generalization can be added to a practical incremental constraint satisfaction algorithm, and that the NP-completeness result cited above is not a major stumbling block in practice. However, a substantial amount of further work, including both theoretical and experimental performance analysis, is needed before this hypothesis can be validated or refuted.

Cycles in the constraint graph can arise in two ways: from programmer error (adding the same constraint twice, or otherwise creating redundant constraints); and from problems that demand cycles (e.g., simultaneous equations and inequalities). Cycles arising from programmer error are probably best handled by improved debugging facilities, rather than by augmenting the algorithm. However, cycles due to simultaneous equations or inequalities—primarily linear ones—can arise in realistic user interface applications. Local propagation, when applicable, is the clear technique of choice for solving constraints, due to its speed and good support for separate planning and execution stages. Completely replacing local propagation with a numeric constraint solver that could handle simultaneous equations or inequalities would be unsatisfactory, since non-numeric constraints are important in user interfaces. We have therefore begun investigating a hybrid constraint solver, augmenting SkyBlue with the capability to detect a “snarl” of simultaneous constraints. When such a snarl is encountered, it would use a simple rule base to select an appropriate specialized solver, pass the snarl off to that solver for processing, then make use of the results in further local propagation steps.
7 Conclusions

We have described some problems in user interface construction that are more easily solved using multi-way constraints than with one-way constraints, such as the problem of presenting multiple, editable views of a data set. We argue that such problems are common enough to make multi-way constraints preferable to one-way constraints for user interface construction. Our description of the DeltaBlue algorithm, and our experiences implementing it in several languages and integrating it into Garnet, provide evidence that multi-way constraint systems are not difficult to implement. Finally, we have shown that the DeltaBlue algorithm has excellent incremental performance in both theory and practice, so efficiency is not a reason to choose a one-way constraint solver over a multi-way one. Given all this, is there any reason to use a one-way constraint solver? There are two reasons why the answer might be yes.

The first—and less compelling—reason is that the application at hand might include only constraints that are naturally one-way. Even in such applications, however, multi-way constraints might add additional functionality or allow future enhancements that would be difficult to implement using one-way constraints. A good example of this is the current generation of spreadsheets. Spreadsheets historically have used a one-way constraint mechanism. However, the latest versions of Microsoft Excel (Version 3.0) and Lotus 1-2-3 both incorporate solvers for simultaneous equations (i.e., multi-way, cyclic constraints). Given the efficiency of DeltaBlue, and its ability to simulate one-way constraints with read-only annotations, one might as well support multi-way capability even if few uses for it are apparent initially.

The second—and more compelling—reason is that, in general, the behavior of one-way constraint systems is more predictable than that of multi-way constraint systems. Some early multi-way constraint systems sometimes produced unexpected “black hole” solutions. For example, a geometric editor might satisfy the constraints that one line be horizontal and that another line be connected to it and vertical by returning a solution in which both lines were zero-length [20]. This solution satisfies the constraints, but probably not in the way the user expected! In our recent work, constraint hierarchies have let us express stability constraints to prevent this particular pitfall. Nevertheless, we still occasionally find ourselves surprised by a correct solution that the system produces. A current research project—the topic of Michael Sannella’s forthcoming Ph.D. dissertation—is to improve the debugging, explanation, and control capabilities provided to the user of a multi-way constraint system.

In summary, multi-way constraints are more general than one-way constraints, comparable in speed, and easy to implement: all strong arguments for basing future user interface work on multi-way rather than one-way constraints.

We are optimistic that ongoing research will eliminate DeltaBlue’s restrictions that prohibit methods with multiple outputs and cyclic constraint graphs, and that will make the behavior of multi-way constraint systems easier to understand. This additional expressiveness and ease-of-use will make multi-way constraint systems even more attractive for the construction of constraint-based user interfaces.

7.1 Acknowledgements

Thanks to Ralph Hill, Scott Hudson, Brad Myers, and Brad Vander Zanden for information and advice about their work, and about how it relates to that described here. This work was supported in part by the National Science Foundation under Grant Nos. IRI-9102938 and CCR-9107395, by the Canadian National Science and Engineering Research Council under Grant OGP0121431, by equipment donations from Sun Microsystems, by a gift from Apple Computer, and by graduate fellowships from the National Science Foundation, Apple Computer, and IBM.
A Appendix: DeltaBlue Pseudocode

This Appendix describes the DeltaBlue algorithm in enough detail to allow it to be easily implemented in a variety of languages. The pseudocode procedures presented here have been coded and tested in Smalltalk-80, Common Lisp, C, and C++.

A.1 Data Structures

<table>
<thead>
<tr>
<th>field name</th>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>any</td>
<td>the value of this variable</td>
</tr>
<tr>
<td>constraints</td>
<td>Set of Constraints</td>
<td>all constraints that reference this variable</td>
</tr>
<tr>
<td>determinedBy</td>
<td>Constraint</td>
<td>the constraint that determines this variable, or none</td>
</tr>
<tr>
<td>walkStrength</td>
<td>Strength</td>
<td>the walkabout strength of this variable</td>
</tr>
<tr>
<td>mark</td>
<td>Integer</td>
<td>this variable’s mark</td>
</tr>
<tr>
<td>stay</td>
<td>Boolean</td>
<td>true if this variable is computed at planning time</td>
</tr>
</tbody>
</table>

Figure 19: Variable Record Fields

Variable records (Figure 19) are the glue of constraint graphs. In addition to its value, a variable has a set of all the constraints that refer to it (constraints) and a pointer to the constraint that determines its value in the current solution graph (determinedBy). If no constraint determines the variable’s value, the determinedBy field is set to none. The fields walkStrength and mark are used in method selection and plan extraction. The stay field is used for constant propagation. This field is true if the variable’s value was precomputed at planning time and need not be recomputed at plan execution time.

Variables are initialized at creation time as if they were determined by a virtual stay constraint with a strength of weakest:

```
InitializeVariable(v: Variable, initialValue: any)
    v.value := initialValue.
    v.constraints := {}.
    v.determinedBy := none.
    v.walkStrength := weakest.
    v.mark := 0.
    v.stay := true.
```

DeltaBlue uses the variable mark field in several ways. During the process of adding a constraint to the hierarchy, when a method is selected its output variable is marked. This prevents possible loops in which a pair of constraints are alternately added and retracted. Marks are also used to detect cycles in the constraint solution graph, in which case DeltaBlue will remove the offending constraint. Finally, marking is used during plan extraction to indicate which variables have been computed by methods already in the plan, allowing DeltaBlue to ensure that the inputs of a method will be computed before that method is executed.

Variables are marked with monotonically increasing numbers rather than single bits, to save the cost of clearing the mark fields at the start of each operation. The price for this time savings is a slight increase in space; the mark field must contain enough bits to ensure that mark values will never be reused (current implementations of DeltaBlue use 32 bit marks).
<table>
<thead>
<tr>
<th>field name</th>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>variables</td>
<td>Set of Variables</td>
<td>the variables constrained by this constraint</td>
</tr>
<tr>
<td>strength</td>
<td>Strength</td>
<td>this constraint’s level in the constraint hierarchy</td>
</tr>
<tr>
<td>inputFlag</td>
<td>Boolean</td>
<td>true for input constraints (e.g., mouse constraints)</td>
</tr>
<tr>
<td>methods</td>
<td>Set of Methods</td>
<td>the possible methods for enforcing this constraint</td>
</tr>
<tr>
<td>selectedMethod</td>
<td>Method</td>
<td>the method used to enforce this constraint, or none</td>
</tr>
</tbody>
</table>

Figure 20: Constraint Record Fields

A constraint record (Figure 20) represents a constraint on a set of variables. The methods field contains the set of alternative methods for enforcing it. The selectedMethod field is used by DeltaBlue to record which of these methods is used to enforce the constraint in the current solution graph. If the constraint is not enforced, the selectedMethod field is set to none.

The inputFlag field is true for constraints that depend on the outside world, such as a mouse constraint that sets a variable to the current position of the mouse.

<table>
<thead>
<tr>
<th>field name</th>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>Procedure</td>
<td>a procedure that calculates the method output value</td>
</tr>
<tr>
<td>output</td>
<td>Variable</td>
<td>the output variable of this method</td>
</tr>
</tbody>
</table>

Figure 21: Method Record Fields

A method record (Figure 21) represents one of the possible ways to enforce a constraint. A method has an enforcement procedure (code) and a reference to the constrained variable that it changes (output). The code procedure contains pointers to the input variables accessed by the method.

A constraint’s methods determine its behavior. A new type of constraint is defined by writing a procedure that allocates storage for the constraint, fills in its variables, strength, inputFlag, and methods fields, and fills in the code and output fields of each method.

A.2 Entry Points

Initially, both the constraint hierarchy and the current solution graph are empty. The current solution graph is incrementally updated as the constraint hierarchy is modified by the procedures AddConstraint and RemoveConstraint. There are several additional procedures for constructing and executing plans for constraint resatisfaction: ExtractPlanFromVariables, ExtractPlanFromConstraints, and ExecutePlan.

A.3 Adding Constraints

AddConstraint is the procedure for adding a new constraint to the constraint hierarchy. It simply initializes the selectedMethod field of the constraint to none, registers the constraint with its variables, and calls IncrementalAdd to attempt to enforce it.
AddConstraint(c: Constraint)
 c.selectedMethod := none
For each variable v in c.variables do
 Add c to v.constraints
IncrementalAdd(c)

IncrementalAdd(c: Constraint)
 mark := NewMark()
 retracted := Enforce(c, mark)
 While retracted <> none do
 retracted := Enforce(retracted, mark)

Enforce attempts to find a method to enforce the constraint c, retracting a weaker constraint if necessary. If it succeeds, Enforce calls AddPropagate to update the walkabout strengths of all variables downstream of the given constraint, and returns the retracted constraint (i.e., the one that previously determined the output of the newly enforced constraint), if any. If AddPropagate returns false, this indicates that a cycle has been detected, and the constraint c has been removed, so Enforce simply returns none. If no method can be found and the constraint is required, an error is raised. If no method can be found and the constraint is not required, the constraint is simply left unenforced.

To guarantee eventual termination in the face of inadvertent cycles, the output of the selected method is marked, and SelectMethod only selects methods whose outputs are not already marked. The inputs of the selected method are also marked in order to allow detection of cycles in AddPropagate.
Enforce(c: Constraint, mark: Integer) : (Constraint | none)
 SelectMethod(c, mark)
 If Enforced(c) then
 For all variables i in Inputs(c) do
 i.mark := mark
 retracted := c.selectedMethod.output.determinedBy
 If retracted <> none then retracted.selectedMethod := none
 c.selectedMethod.output.determinedBy := c
 If not(AddPropagate(c, mark)) then
 Error: "Cycle encountered"
 Return none
 c.selectedMethod.output.mark := mark
 Return retracted
 Else
 If c.strength = required then
 Error: "Failed to enforce a required constraint"
 Return none
 SelectMethod attempts to set the selectedMethod field of the given constraint to a method such that:

 1. the method’s output is not marked,
 2. the walkabout strength of the method’s output is weaker than the given constraint, and
 3. the method’s output has the weakest possible walkabout strength.

 If a method meeting these criteria cannot be found, then the selectedMethod field of the given constraint is set to none.

 SelectMethod(c: Constraint, mark: Integer)
 c.selectedMethod := none
 bestOutStrength := c.strength
 For all methods m in c.methods do
 If m.output.mark <> mark and
 Weaker(m.output.walkStrength, bestOutStrength) then
 c.selectedMethod := m
 bestOutStrength := m.output.walkStrength

 AddPropagate recomputes the walkabout strengths, the stay flags, and possibly the values of all variables downstream of the given constraint. It also checks for inadvertent cycles by looking for downstream variables that have been marked. Enforce marks the inputs of the constraint being enforced before calling AddPropagate. Thus, if a marked variable is encountered then there is a path from the output of the constraint back to one of its inputs, constituting a cycle. If a cycle is detected, then the constraint being added is removed and false is returned. Otherwise, true is returned.
AddPropagate(c: Constraint, mark: Integer) : Boolean
 todo := \{c\}
 While todo <> {} do
 Remove a constraint d from todo
 If d.selectedMethod.output.mark = mark then
 IncrementalRemove(c)
 Return false
 Recalculate(d)
 Add all ConsumingConstraints(d.selectedMethod.output) to todo
 Return true

A.4 Removing Constraints

RemoveConstraint is the procedure for removing a constraint from the constraint hierarchy. If the constraint to be removed is enforced, then RemoveConstraint retracts it by calling IncrementalRemove. Otherwise, the constraint is simply unregistered with its variables.

RemoveConstraint(c: Constraint)
 If Enforced(c) then
 IncrementalRemove(c)
 Else
 For each variable v in c.variables do
 Remove c from v.constraints

IncrementalRemove removes the enforced constraint, by setting its selectedMethod field to none and unregistering it from its variables. Then, it calls RemovePropagateFrom to set the stay and walkStrength fields of the constraint's output variable as if it were determined by a stay constraint of strength weakest, and propagate this change to all downstream variables, collecting all the unenforced downstream constraints in the process. Removing the given constraint may permit one of these previously unenforced constraints to become enforced, so an attempt is made to enforce each of them in turn. The unenforced constraints are processed in order of decreasing strengths, as a heuristic. If they are processed in a different order, the algorithm is still correct, but may do unnecessary work.

Note: after this pseudocode was written, one of the authors proved that when a constraint is removed, it is only necessary (and possible) to enforce one of the strongest eligible unenforced constraints [31]. Thus, IncrementalRemove and RemovePropagate could be revised to record and enforce only a single constraint, rather than a list of constraints. The decreased bookkeeping would probably result in some improvement in the performance of RemoveConstraint. However, because this pseudocode has been well-tested—it has been the basis of at least seven implementations of DeltaBlue, including all the ones in this paper—we have resisted the temptation to change it now. The reader who undertakes this optimization should be careful to record only the strongest of the constraints that have actually been made eligible for enforcement (i.e., constraints that, after walkabout strength propagation, have a strength greater than that of one of their potential output variables).
IncrementalRemove(c: Constraint)
 out := c.selectedMethod.output
 c.selectedMethod := none
 For each variable v in c.variables do
 Remove c from v.constraints
 unenforced := RemovePropagateFrom(out)
 For all constraints d in unenforced in order of decreasing strength do
 IncrementalAdd(d)

RemovePropagateFrom sets the determinedBy, stay, and walkStrength fields of the removed constraint’s output variable (out) as if it were determined by a stay constraint of strength weakest. Then, this change is propagated to all downstream variables. During this process, all unenforced downstream constraints are saved, and returned as the value of RemovePropagateFrom

RemovePropagateFrom(out: Variable) : Set of Constraints
 unenforced := {}
 out.determinedBy := none
 out.walkStrength := weakest
 out.stay := true
 todo := {out}
 While todo <> {} do
 Remove a variable v from todo
 For all constraints c in v.constraints do
 If not(Enforced(c)) then add c to unenforced
 For all constraints c in ConsumingConstraints(v) do
 Recalculate(c)
 Add c.selectedMethod.output to todo
 Return unenforced

A.5 Extracting Plans

ExtractPlanFromVariables and ExtractPlanFromConstraints are procedures that construct plans to resatisfy the constraints. ExtractPlanFromVariables starts from a set of seed variables provided by the client. ExtractPlanFromConstraints starts from a set of seed constraints, presumably input constraints, provided by the client. Both techniques use an auxiliary function MakePlan to do the actual work.

ExtractPlanFromVariables(variables: Set of Variables) : Plan
 sources := {}
 For all variables v in variables do
 For all constraints c in v.constraints do
 If c.inputFlag and Enforced(c) then add c to sources
 Return MakePlan(sources)
ExtractPlanFromConstraints(constraints: Set of Constraints) : Plan

sources := {} For all constraints c in constraints do
 If c.inputFlag and Enforced(c) then add c to sources
Return MakePlan(sources)

MakePlan(sources: Set of Constraints) : Plan

plan := {}
mark := NewMark()
hot := sources
While hot <> {} do
 Remove a constraint c from hot
 If c.selectedMethod.output.mark <> mark and InputsKnown(c, mark) then
 Append c to plan
 c.selectedMethod.output.mark := mark
 Add all ConsumingConstraints(c.selectedMethod.output) to hot
Return plan

ExecutePlan is a procedure that executes the specified plan, an ordered list of constraints. The
plan is executed by taking each constraint in order, executing the procedure associated with the
constraint's selected method, and setting the value of the method's output variable to the result.

A plan generated by ExtractPlanFromVariables or ExtractPlanFromConstraints will start
with an input constraint, such as a constraint that sets a variable to the current position of the
mouse, followed by other constraints to propagate the changed variable values through the network.
As long as the constraint solution graph is not changed by adding or removing a constraint, the
plan can be executed repeatedly to propagate new input values. Once the solution graph is changed,
however, the plan may be invalid, and should not be executed.

ExecutePlan(constraints: Plan)

For each constraint c in constraints do
 c.selectedMethod.output.value := Execute(c.selectedMethod.code)
A.6 Utility Functions

Inputs returns the set of variables that are inputs of the given constraint in the current solution graph. This assumes that all of the constrained variables are inputs except for the output variable of the selected method.

Inputs(c: Constraint) : Set of Variables
Return all variables v in c.variables such that v <> c.selectedMethod.output

InputsKnown returns true if all inputs of the method selected for the given constraint are known. A variable is known if either it is marked, indicating that it has been computed by a constraint appearing earlier in the plan, or its stay flag is true, indicating that it will be a constant at plan execution time.

InputsKnown(c: Constraint, mark: Integer) : Boolean
For all variables v in Inputs(c) do
 If not(v.mark = mark or v.stay) then return false
Return true

Recalculate is called by both AddPropagate and RemovePropagateFrom. It updates the walkabout strength and stay flag of the given constraint's output variable. If the stay flag is true, the value of the output variable is precomputed. This variable will be considered a constant at plan execution time.

Recalculate(c: Constraint)
c.selectedMethod.output.walkStrength := OutputWalkStrength(c)
c.selectedMethod.output.stay := ConstantOutput(c)
If c.selectedMethod.output.stay then
c.selectedMethod.output.value := Execute(c.selectedMethod.code)

OutputWalkStrength computes the walkabout strength to be assigned to the output variable of the given constraint. The walkabout strength is the weakest of the constraint's strength and the walkabout strengths of all the current inputs that could become outputs by choosing another method.

OutputWalkStrength(c: Constraint) : Strength
minStrength := c.strength
For all methods m in c.methods do
 If m.output <> c.selectedMethod.output and
 Weaker(m.output.walkStrength, minStrength) then
 minStrength := m.output.walkStrength
Return minStrength
ConstantOutput returns true if the output of the given constraint will be a constant at plan execution time. This is the case if (1) the constraint is not an input constraint such as a mouse constraint, and (2) all the constraint’s inputs are marked stay or the constraint has no inputs. A stay constraint has no inputs, so its output variable will be considered a constant.

\[
\text{ConstantOutput}(c: \text{Constraint}) : \text{Boolean}
\]
\[
\text{If } c.\text{inputFlag} \text{ then return false}
\]
\[
\text{For all variables } v \text{ in } \text{Inputs}(c) \text{ do}
\]
\[
\text{If not}(v.\text{stay}) \text{ then return false}
\]
\[
\text{Return true}
\]

ConsumingConstraints returns the set of all enforced constraints on the given variable except the one that currently determines its value.

\[
\text{ConsumingConstraints}(v: \text{Variable}) : \text{Set of Constraints}
\]
\[
\text{consumers} := \{\}
\]
\[
\text{For all constraints } c \text{ in } v.\text{constraints} \text{ do}
\]
\[
\text{If } \text{Enforced}(c) \text{ and } c \neq v.\text{determinedBy} \text{ then}
\]
\[
\text{Add } c \text{ to } \text{consumers}
\]
\[
\text{Return } \text{consumers}
\]

\text{Enforced} returns true if the given constraint is enforced. A constraint is enforced if DeltaBlue has selected a method to enforce it.

\[
\text{Enforced}(c: \text{Constraint}) : \text{Boolean}
\]
\[
\text{Return } c.\text{selectedMethod} \neq \text{none}
\]

\text{Execute} is a primitive function that evaluates a procedure, and returns the result of the procedure. This function is used to execute the procedure associated with a method, which contains pointers to the input variables accessed by the method.

Precisely how methods are represented, bound to the variables of their constraint, and executed are details that depend heavily on the facilities of the underlying implementation language.

\[
\text{Execute}(\text{code}: \text{Procedure}) : \langle\text{any}\rangle
\]
\[
\langle\text{primitive}\rangle
\]

\text{NewMark} is a primitive function that returns a previously unused mark value.

\[
\text{NewMark}() : \text{Integer}
\]
\[
\langle\text{primitive}\rangle
\]

\text{Weaker} is a primitive function that returns true if \text{s1} is a weaker strength than \text{s2}.

\[
\text{Weaker}(\text{s1}, \text{s2}: \text{Strength}) : \text{Boolean}
\]
\[
\langle\text{primitive}\rangle
\]
A.7 An Example

An example of the operation of AddConstraint and RemoveConstraint is shown in Figure 22. Row (a) shows the initial state of the constraint graph. Five variables are linked in a chain by required equality constraints, and a weak stay constraint has been added to the rightmost variable. Initially, the five variables have walkabout strengths of weak due to the weak stay constraint. Suppose that a strong edit constraint is then added to the middle variable. When this edit constraint is enforced, SelectMethod finds an acceptable method for the edit constraint, the constraint currently setting that variable is revoked, and AddPropagate updates the walkabout strengths of the downstream variables (b). Next, an attempt is made to enforce the retracted constraint, which causes yet another constraint in the chain to be retracted (c). After another call to Enforce, the algorithm terminates, leaving the weak stay constraint unenforced (d).

Now, suppose that this edit constraint is removed by a call to RemoveConstraint. After the constraint is removed from the graph, RemovePropagateFrom sets the walkabout strength of its former output variable to weakest, and propagates this to all of the downstream variables (e). RemovePropagateFrom also discovers the unenforced weak stay constraint, and IncrementalAdd is called to enforce it. This call enforces the weak stay constraint and updates the walkabout strength of its output variable (f), retracting the constraint currently setting that variable. After two more calls to Enforce, the algorithm terminates (g,h).
References

