Discovering and Representing Logical Structure in Code Change

Miryung Kim, Jonathan Beall, David Notkin
Computer Science & Engineering
University of Washington
Seattle WA, USA
{miryung, jibb, notkin}@cs.washington.edu

ABSTRACT
There is a significant gap between how programmers think about code change and how change is represented in most software engineering tools. Programmers often think about code change in terms of structure: which code elements changed and how their structural dependencies are affected by the change. By reasoning about structural information within and around changed code, they recognize high-level systematic changes such as refactorings and crosscutting changes. Yet, most software engineering tools are based on a textual representation of code change. To bridge this gap, we propose a novel rule-based delta representation that explicitly and concisely captures systematic changes to a program’s structure, along with an engine that automatically infers such rules. Our logical structural delta (LSD) can complement existing uses of textual deltas: e.g., understanding another programmer’s modification, reviewing a patch before submission, and writing change documentation. We believe that LSD may serve as a basis for many software engineering tools that can benefit from explicit logical structure in code change: a bug finding tool, a refactoring reconstruction tool, a dependency removal checker, etc.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement— restructuring, reverse engineering, and reengineering

Keywords
code change, delta, systematic change, software evolution

1. INTRODUCTION
Programmers often inspect differences between program versions. For example, a team lead may review the work done by her team members by examining a program delta rather than the entire program. For such change-centric tasks, programmers generally use software engineering tools such as diff, CVS, and Unix patch that are based on line-based textual program deltas.

However, in some situations, textual deltas are not very effective in helping programmers understand code change. Suppose a team lead is reviewing a patch that involves hundreds of lines across multiple files. The team lead may find it difficult to figure out whether the intended change is implemented completely, why a certain group of files changed together, or whether a new dependency was unexpectedly introduced by the patch.

Several limitations of textual deltas seem to contribute to these difficulties. First, textual deltas do not explicitly capture structural information that programmers often look for when they understand code changes: which code elements (types, methods, and fields) changed and how their structural dependencies (subtyping, overriding, data access, invocation, and containment) are affected by the change. Second, textual deltas are verbose because they treat code changes as line-level differences even if the individual changes form a single high-level change. Finally, they do not contain contextual information that can help programmers understand logical structure in code change: for example, when all added methods override type t’s method m, a textual delta reports the methods individually, leaving it to the programmer to discover their common structural characteristic.

To overcome these limitations, we propose a novel program delta that represents structural information using logic rules and facts, along with an algorithm that automatically infers these rules. Each of our inferred rules describes a group of atomic changes that share similar structural characteristics and thus corresponds to a high-level systematic change. To discover contextual information, our inference algorithm examines not only changed code fragments but also unmodified code fragments connected to them by structural dependencies. Using logic rules makes the delta more concise because a single rule can summarize many related facts at once. In addition, our approach detects and explicitly represents anomalies that signal incomplete and inconsistent change by allowing exceptions to a general rule.

For example, imagine a crosscutting change made by a programmer to prevent SQL injection attacks: removing all calls to DB.exec from the old version and replacing them with calls to SafeSQL.exec. Although this change is conceptually simple, its corresponding textual delta would likely involve changes scattered across many files. In our logical structural delta (LSD), this change is represented concisely as the following two rules—the first rule states...
that all methods that called DB.exec in the old version no longer call DB.exec and the second rule states that these methods now call SafeSQL.exec. The details on the syntax and semantics of rules appear in Section 3.

calls(m, "DB.exec") ⇒ added_calls(m, "DB.exec")
calls(m, "DB.exec") ⇒ deleted_calls(m, "SafeSQL.exec")

As another example, imagine a pull-up method refactoring that moves getHost methods to their superclass, NameSvc. The following two rules show that getHost methods were pulled up to NameSvc from all of its subclasses except for LmiSvc, indicating that a programmer may have forgotten to finish the refactoring.

current_inheritedmethod("getHost", "NameSvc", t)
⇒ added_inheritedmethod("getHost", "NameSvc", t)

past_calls(m, "DB.exec") ⇒ deleted_calls(m, "DB.exec")

The following two rules show that getHost methods were pulled up to NameSvc from all of its subclasses except for LmiSvc, indicating that a programmer may have forgotten to finish the refactoring.

current_inheritedmethod("getHost", "NameSvc", t)
⇒ added_inheritedmethod("getHost", "NameSvc", t)

past_calls(m, "DB.exec") ⇒ deleted_calls(m, "SafeSQL.exec")

By looking at the list of changed files, she suspected that two different logical changes got mixed up: a design change request and a configuration bug fix. However, she could not remember which changed code fragments correspond to which logical change.

3. LOGICAL STRUCTURAL DELTA

We hypothesize that many difficulties of investigating code change using textual deltas originate from a lack of structural information about code change: which code elements (types, methods, and fields) changed and how their structural dependencies (subtyping, overriding, data access, invocation, and containment) were affected by the change.

To augment a program delta with such structural information, we represent each program version as a set of logic facts that describe code elements and their structural dependencies to other code elements. The difference between two versions is then represented as a set of facts deleted from the old fact-base (FB_1) and a set of facts added to the new fact-base (FB_2). For example, Table 1 shows the fact-base representation of two program versions and the delta between the two fact-bases (∆FB). Even though the change is conceptually simple, “remove all accesses to Key.on and invoke Key.chk from the start methods in Car’s subtypes,” ∆FB lists the three accesses facts separately and also does not capture contextual information such as subtype("Car", "BMW") and subtype("Car", "GM").

Although ∆FB is a program delta with structural information, it has two major weaknesses. The first weakness is poor conciseness; because ∆FB is a set of facts without any high level structure, it is time-consuming to read and understand when it contains a large number of facts. The second weakness is that ∆FB describes only the structural dependencies of changed code fragments but not those of their surrounding code. For example, when several fields are removed from many different classes, it is useful to know that the fields of t1 type were removed from t2’s subclasses even if t2 does not appear in ∆FB. To overcome these two problems, our approach infers logic rules from the union of all three sets of rules, FB_1, FB_2, and ∆FB.

This approach has two advantages. First, our rule-based delta is often very concise because a single logical rule can imply a number of related facts. Second, by inferring rules from not only ∆FB but also from FB_1 and FB_2, our approach finds useful structural information that cannot be found in ∆FB itself: for example, one can answer whether a systematic change evidenced by ∆FB is true for the entire old or new version.

2. MOTIVATING SCENARIOS

In this section, we list several scenarios that illustrate difficulties that programmers face when investigating code change using textual deltas.¹

Understand the rationale of others’ change. Alice and Bill work in the same team. When Alice tried to commit her bug fix, she got an error message that her change conflicted with Bill’s last change. To understand what he changed and why, she started reading Bill’s last check-in comment, “Common methods go in an abstract class. Easier to extend/maintain/fix,” and the associated diff output. However, she could not easily understand whether his change

¹The scenarios are motivated by the observation carried out by Ko et al. [20] as well as the examples found in our study.

Review a patch before its submission. To simplify the usage of constants in her program, Alice decided to put all constants in the Context class. While implementing this change, she ported the constant accesses to use Context’s constants instead. After finishing edits, she reviewed the diff output but could not easily verify the correctness of constant porting because some constants were accessed from many methods.

Write change documentation. To write a check-in comment, Alice ran a diff tool to examine her modification. By looking at the list of changed files, she suspected that two different logical changes got mixed up: a design change request and a configuration bug fix. However, she could not remember which changed code fragments correspond to which logical change.
they appear in unmodified parts of a program.

The intuition behind our rule-based approach is that there are many situations in which apparently independent changes implement a higher-level, more systematic change together. By inferring rules that correspond to such high-level systematic changes, our approach concisely summarizes structural information within and around changed code. For instance, changing an API and subsequently changing all invocations of the API is an example of such systematic change. A crosscutting change that removes all dependencies to a particular module is another familiar example.

LSD Predicate. Our prototype currently models structural dependencies in a Java program at the type, field, and method level using the following twelve predicates. The first seven predicates describe code elements and their containment relationships. For example, type("org.foo.Bar", "Bar", "org.foo") means that there is either a class or an interface with the name Bar in org.foo package, and its fully qualified name is org.foo.Bar. The next five predicates describe field access, method invocation, subtyping, and overriding dependencies. For example, inheritedmethod("foo", "Bob") means that Bob inherits method of Boo class.

<table>
<thead>
<tr>
<th>Pre-Conditions</th>
<th>Post-Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. past+accesses(Key, on, m) => deleted+accesses(Key, on, m)</td>
<td></td>
</tr>
<tr>
<td>2. added+calls("BMW.start", "start", BMW)</td>
<td></td>
</tr>
<tr>
<td>3. added+calls("GM.start", "start", GM)</td>
<td></td>
</tr>
<tr>
<td>4. added+calls("Bus.start", "start", Bus)</td>
<td></td>
</tr>
<tr>
<td>5. added+calls("Kia.start", "start", Kia)</td>
<td></td>
</tr>
<tr>
<td>6. added+calls("BMW.start", "start", BMW)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: A Fact-Base Representation of Two Program Versions and their Difference

Table 2: LSD Rule Inference Example

To distinguish which facts were deleted from the old version and added to the new version, we prefix past_ and current_ to the facts in FB_0 and FB_n, respectively. To distinguish which facts were deleted from the old version and added to the new version, we prefix deleted_ and added_ to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers, local variable accesses, control logic, and temporal logic.

LSD Rule. A logic rule describes the relationship among groups of related logic facts. An LSD rule describes a high-level systematic change by relating groups of facts in the three fact-bases.

To represent a group of similar facts at once, we create a logic literal by binding some of a predicate’s arguments to variables. For example, subtype("Foo", t) represents all subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with boolean logic operators. In particular, our LSD rules are horn clauses where the conjunction of one or more literals in the antecedent implies a single literal in the conclusion, i.e., A(x) ∧ B(x,y) ... ∧ C(x,z) ⇒ D(x,y). In LSD rules, all variables are universally quantified and variables do not appear in the conclusion unless they are bound in the antecedent. LSD rules are either ungrounded rules (rules without constant bindings) or partially grounded rules (rules with constant bindings).

A rule r has a match if ∆FB if if is a fact created by grounding r’s conclusion with constants that satisfy r’s antecedent given FB_0, FB_n, and ∆FB. A rule r has an exception if there is no match in ∆FB implied by a true grounding of its antecedent. For example, a rule A(x) ⇔ B(x,y) has a match B(z) and an exception x=c_2 if A(c_1), A(c_2), and B(c_2) are in the three fact-bases, but B(c_2) is not in ∆FB. We explicitly encode exceptions as a part of a rule to note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each style. These rule styles can express high-level systematic changes such as dependency removal and addition, feature addition and deletion, consistent maintenance, replacement of API usage or related code change.

Example. Suppose that a programmer intended to remove all accesses to a field Key.on and call Key.chk from the start methods in the classes implementing Car. Table 1 presents the fact-bases and Table 2 shows the rules inference and ∆FB reduction process. Based on the fact that all accesses to Key.on are removed from the old version, ∆FB is reduced to ∆FB' by replacing the three deleted accesses facts with
the following rule:
\[
past_accesses\left(\text{"Key.on"}, m\right) \Rightarrow deleted_accesses\left(\text{"Key.on"}, m\right)
\]
Based on the fact that start methods that call Key.chk are contained in Car’s subtypes, ∆FB is reduced to ∆FB” by winnowing out the two added_calls facts using the following inferred rule. This rule also signals inconsistency that Kia did not change similarly.
\[
past_method\left(m, \text{"start"}, t\right) \land past_subtype\left(\text{"Car"}, t\right) \Rightarrow added_call\left(m, \text{"Key.chk"}\right), \text{except } t=\text{Kia}.
\]

4. ALGORITHM
Our algorithm accepts two versions of a program and outputs a logical structural delta that consists of logic rules and facts. Our algorithm has three parts: (1) generating fact-bases, (2) inferring rules from the fact-bases, and (3) post-processing the inferred rules.

Part 1. Fact-base Generation. We use JQuery to extract logic facts—whose predicates are the types described in Section 3—from a Java program [14]. JQuery is a query-based browser that represents a Java program in terms of logical relations and provides an interface to execute a logic query. It analyzes a Java program and extracts code elements and their structural dependencies using the Eclipse JDT Parser; thus, its precision depends on the Eclipse’s static analysis capability. Using JQuery, we create fact-bases, FB_o and FB_n, from the old and new version respectively and compute ∆FB using a set-difference operator. When a programmer renames some code elements, ∆FB includes pairs of deleted and added facts even though the corresponding code did not change. For example, if foo package is renamed to bar, ∆FB will contain deleted_package(“foo”) and added_package(“bar”). We identify code element matches using our previous work [18], allowing our delta algorithm to consider these as renamings rather than deleted and added fact pairs.

Part 2. First Order Logic Rule Learning. Our goal is to infer rules each of which corresponds to a high-level systematic change and thus explains a group of added and deleted facts. This step takes the three fact-bases and outputs inferred rules and remaining unmatched facts in ∆FB. Some rules refer to groups of past_ and current_ facts, providing structural characteristics about changed code that cannot be found in ∆FB only.

Three input parameters define which rules to be considered in the output: (1) m, the minimum number of facts a rule must match, (2) a, the minimum accuracy of a rule, where accuracy = # matches / (# matches + # exceptions), and (3) k, the maximum number of literals in a rule’s antecedent. A rule is considered valid if the number of matches and exceptions is within the range set by these parameters.

Our rule learning algorithm is a bounded-depth search algorithm that enumerates rules up to a certain length. The depth is determined by k. Increasing k allows our algorithm to find more contextual information from FB_o and FB_n, evaluating all possible rules with k literals in the antecedent has the same effect as examining surrounding contexts that are roughly k dependency hops away from changed code fragments. Our algorithm enumerates rules incrementally by extending rules of length i to create rules of length i + 1. In each iteration, we extend the ungrounded rules from the previous iteration by appending each possible literal to the antecedent of the rules. Then for each ungrounded rule, we try all possible constant substitutions for its variables. After selecting valid rules in this iteration, we winnow out the selected rules’ matches from U (a set of unmatched facts in ∆FB) and proceed to the next iteration.

Some rules are always true regardless of change content and do not provide any specific information about code change. For example, deleting a package deletes all contained types in the package, and deleting a method implies deleting all structural dependencies involving the method. To prevent learning such rules, we have written 30 default winnowing rules by hand and winnow out the facts from U in the beginning of our algorithm.

For the rest of this section, we explain two subroutines in detail: (1) extending ungrounded rules from the previous iteration and (2) generating a set of partially grounded rules from an ungrounded rule. Then we discuss a beam search heuristic that we use to tame the exponential growth of the rule search space. Our rule inference algorithm is summarized in Algorithm 1.

Subroutine 1. Extending Ungrounded Rules. For each ungrounded rule from the previous iteration, we identify all possible predicates that can be appended to its antecedent. For each of those predicates, we create a set of candidate literals by enumerating all possible variable assignments. After we create a new rule by appending each candidate literal to the ungrounded rule’s antecedent, we check two conditions: (1) we have not already generated an equivalent rule, and (2) it matches at least m facts in U. If the rule has fewer than m matches, we discard it because adding a literal to its antecedent or grounding its variables to constants can find only fewer matches. If the two conditions are met, we add the ungrounded rule to the list of new ungrounded rules to try constant substitutions for its variables and to pass to the next iteration.

Subroutine 2. Generating Partially Grounded Rules. To create partially grounded rules from an ungrounded rule, we consider each variable in turn and try substituting each possible constant for it as well as leaving it alone. At each step within this process, we evaluate the rule to check how many matches it finds in U. If it finds fewer than m matches,
Part 3. Post Processing. Rules with the same length may still have overlapping matches after Part 2. To avoid outputting rules that cover the same set of facts in the ∆FB, we select a subset of the rules using the greedy version of SET-COVER algorithm [2]. In this step, we use the same ranking order as in our beam search. We then output the selected rules and the remaining unmatched facts in ∆FB.

5. EVALUATION

To investigate if and when LSD can be useful for describing code change, we performed a set of quantitative and qualitative assessments. We compared LSDs with textual deltas (TDs) and change descriptions written by programmers. We also compared LSD with ∆FB, a simple structural delta between two versions.

Subject Programs. We applied our LSD tool to two open source projects, carol and dnsjava, and to our LSD tool itself. We selected these programs because their medium code size (up to 30 KLOC) allowed us to manually analyze changes in these programs in detail. Carol is a library that allows clients to use different remote method invocation implementations. From its version control system, we selected 10 version pairs with check-in comments that indicate non-trivial changes. Its size ranged from 10800 LOC to 29850 LOC and from 90 files to 190 files. Dnsjava is an implementation of domain name services in Java. From its release archive, we selected 29 version pairs. Its program size ranged from 5080 LOC to 14500 LOC and from 40 files to 83 files. We also selected our LSD tool’s first 10 versions pairs—revisions that are at least 8 hours apart and committed by different authors. Its size ranged from 10800 LOC to 29850 LOC and from 90 files to 190 files.

Comparison with Textual Delta. The goal of a comparison with TD is to investigate (1) how LSD and TD differ in terms of conciseness and (2) how rules of types changes LSD describes more effectively than TD. We compared TDs using diff and LSDs using our tool with default input parameter settings (m=3, a=0.75, k=2). We then investigated individual TDs and LSDs and studied associated change contents. To assist in this investigation, we built a viewer that visualizes each rule along with the facts explained by the rule. When a user clicks on a fact, it shows the corresponding code snippet in both old and new version.

Table 4 shows quantitative comparison results. CLOC
represents the number of added, deleted, and changed lines.

Hunk represents the number of blocks with consecutive line changes, and % Touched represents the percentage of lines that programmers must inspect to examine the change completely out of the total number of files in both versions. It is computed as (# added files + # deleted files + 2 \times # changed files) / (total \# files in both versions). The more hunks there are and the higher the percentage of touched files is, generally the harder it is to inspect a TD.

While the average TD for carol has over 1200 lines of changes across 13 different files, LSD represents these changes as roughly 10 rules and 20 facts. While the average TD for dnsjava has over 1100 lines across 20 different files, the average LSD has 8 rules and 34 facts. For our own program, while the average TD has about 300 lines of changes across 6 files, the average LSD has 1 rule and 13 facts. Overall, while an average textual delta consists of 997 lines of change scattered across 16 files, our LSD reports an average of 7 rules and 27 facts, relatively smaller than an equivalent textual delta.

The benefits of LSD appear to depend heavily on how systematic the change is. (See Table 5). When changes are structurally systematic—e.g., refactoring, feature addition and removal, dependency addition and removal, constant pool migration—LSDs contain only a few rules and facts even if TDs contain a large number of hunks scattered across many files. Consider the change in carol 429-430, “Common methods go in an abstract class, Easier to extend/maintain/fix.” If a programmer intends to understand whether this change is truly an extract superclass refactoring and whether the refactoring was completed, she needs to examine over 700 lines across 9 files. On the other hand, LSD summarizes this change using only 12 rules and 7 facts and provides concrete information about the refactoring—AbsRegistry was created by pulling up host related fields and methods from the classes implementing NameSvc interface except for LmiRegistry. Consider another change in carol 128-129, “Bug fix, port number trace problem.” To understand how the bug was fixed, a programmer needs to read over 150 lines scattered across 10 files. Our LSD represents the same change with only 1 rule and 4 facts—getPort methods were added to six different classes and they were invoked from a tracer module, TraceCarol. If a programmer examines the LSD before reading the TD, upon inspecting one corresponding file, she can probably skip five other files that include getPort.

When several different systematic changes are mixed with many random non-systematic changes, LSDs tend to contain many rules and facts. Despite a large amount of information in those LSDs, we believe LSDs can still complement scattered and verbose TDs by providing an overview of systematic changes, helping programmers focus on remaining non-systematic changes instead. For instance, a programmer may find the TD for carol 421-422 overwhelming since it includes more than 4000 lines of changes across 14 files. In this case, LSD rules can help programmers quickly understand the systematic changes—modifying exception handling to use NamingExceptionHelper and creating a superclass AbsContext by extracting common methods from Context classes—and focus on other changes instead.
In several cases, TD shows some changes but LSD is empty because LSD does not model differences in comments, control logic, and temporal logic. For example, the LSD for dnsjava 0.9.2-0.9.3 is empty because the code change includes only one added if statement and does not incur changes in structural dependencies.

Overall, our comparison shows that the more systematic code changes are, the smaller number of rules and facts LSDs include. On the other hand, TDs may be scattered across many files and hunks even if the change is structurally homogeneous and systematic. We conjecture that LSDs and TDs can complement each other since LSDs provide an overview of systematic changes and TDs provide change details at a line level.

Comparison with Change Description. Programmers often write check-in comments or update a change log file to convey their change intentions. To understand how LSDs and change descriptions complement each other, we compared LSDs with check-in comments (carol and LSD tool) and change logs (dnsjava). For this comparison, we examined and interpreted all LSD rules and facts and then traced them to corresponding sentences in the change description. Table 5 shows the comparison results. (It includes only several versions due to limited space.)

In many cases, although change descriptions hint at systematic changes, they do not provide much detail. For example, the check-in comment for carol 62-63—"a new simplified configuration mechanism"—does not indicate which classes implement the new configuration mechanism. LSD rules show that Caro1Configuration added many fields to be used by loadCar0lConfiguration, and CarolDefaultValue deleted all Properties type fields.

In some cases, change comments and LSDs agree on the same information with a similar level of detail. For example, in dnsjava 1.0.2-1.1, both the LSD and the change log describe that sendAsync methods return Object instead of int. In some other cases, LSDs and change descriptions discuss different aspects of change; for instance, the change comments for carol 480-481 refer to email discussions on the design of new APIs and include code examples while LSD provides implementation details such as the use of Iterator instead of Enumeration.

Because change descriptions are free-form, they can contain any kind of information at any level of detail; however, it is often incomplete or too verbose. More importantly, it is generally hard to trace back to a program. We believe that LSDs can complement change descriptions by providing concrete information that can be traced to code.

Comparison with a Fact-Level Difference (ΔFB). As we discussed in Section 3, although ΔFB represents a structural difference between two versions, it is verbose and it does not contain contextual information. Based on the following three metrics, we measure the benefits of inferring rules on all three fact-bases instead of using ΔFB.

- **Coverage:** the percentage of facts in ΔFB explained by rules, represented as (# of facts matched by rules / ΔFB). For example, when 10 rules explain 90 facts out of 100 facts in ΔFB, the coverage of rules is 90%.

- **Conciseness:** the measure of how concisely LSD explains ΔFB, represented as (ΔFB / # rules + # facts). For example, when 4 rules and 16 remaining facts explain all 100 facts in ΔFB, LSD improves conciseness by a factor of 5.

- **Additional Information:** the measure of how much additional structural information was extracted from outside of changed code fragments, represented as (# facts in FB, and FB, that are mentioned by the rules but are not contained in ΔFB). For example, the second rule in Table 2 refers to two additional facts that are not in ΔFB, subtype("Car","BMW") and subtype("Car","GM").

Table 6 shows the results for the three data sets (m=3, a=0.75, k=2). On average, the inferred rules cover 75% of facts in ΔFB and also improve the conciseness measure by a factor of 9.3. They contain an average of 9.7 additional facts that are in FB, but not in ΔFB.

Impact of Input Parameters. The input parameters, m (the minimum number of facts a rule must match), a (the minimum accuracy), and k (the maximum number of literals a rule can have in its antecedent) define which rules should be considered in the output. To understand how varying these parameters affect our results, we varied m from 1 to 5, a from 0.5 to 1 with an increment of 0.125, and k from 1 to 2. Table 7 shows the results in terms of average for the carol data set.

When m is 1, all facts in ΔFB are covered by rules by definition. As m increases, fewer rules are found and they cover fewer facts in ΔFB.

As a increases, a smaller proportion of exceptions is allowed per rule; thus, our algorithm finds more rules each of which covers a smaller proportion of the facts, decreasing the conciseness and coverage measures.

Changing k from 1 to 2 allows our algorithm to find more rules and improves the additional information measure from 0.4 to 5.5 by considering code fragments that are further away from changed code. With our current tool, we were not able to experiment with k greater than 2 because the large rule search space led to a very long running time. In the future, we plan to explore using Alchemy—a state-of-the-art first order logic rule learner developed at the University of Washington [21]—to find rules more efficiently.

Threats to Validity. Although our evaluation provides a valuable illustration of how LSD can complement existing uses of textual deltas and change descriptions, our findings may not generalize to other data sets. We need further investigations into how LSD results are affected by other

<table>
<thead>
<tr>
<th>Table 6: Comparison with ΔFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carol</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
<tr>
<td>Med</td>
</tr>
<tr>
<td>Avg</td>
</tr>
</tbody>
</table>

Table 6 shows the results for the three data sets (m=3, a=0.75, k=2). On average, the inferred rules cover 75% of facts in ΔFB and also improve the conciseness measure by a factor of 9.3. They contain an average of 9.7 additional facts that are in FB, but not in ΔFB.

Impact of Input Parameters. The input parameters, m (the minimum number of facts a rule must match), a (the minimum accuracy), and k (the maximum number of literals a rule can have in its antecedent) define which rules should be considered in the output. To understand how varying these parameters affect our results, we varied m from 1 to 5, a from 0.5 to 1 with an increment of 0.125, and k from 1 to 2. Table 7 shows the results in terms of average for the carol data set.

When m is 1, all facts in ΔFB are covered by rules by definition. As m increases, fewer rules are found and they cover fewer facts in ΔFB.

As a increases, a smaller proportion of exceptions is allowed per rule; thus, our algorithm finds more rules each of which covers a smaller proportion of the facts, decreasing the conciseness and coverage measures.

Changing k from 1 to 2 allows our algorithm to find more rules and improves the additional information measure from 0.4 to 5.5 by considering code fragments that are further away from changed code. With our current tool, we were not able to experiment with k greater than 2 because the large rule search space led to a very long running time. In the future, we plan to explore using Alchemy—a state-of-the-art first order logic rule learner developed at the University of Washington [21]—to find rules more efficiently.

Threats to Validity. Although our evaluation provides a valuable illustration of how LSD can complement existing uses of textual deltas and change descriptions, our findings may not generalize to other data sets. We need further investigations into how LSD results are affected by other
factors such as the size of a program and the gap between program versions. In terms of internal validity, when comparing LSDs with textual deltas and change descriptions, the investigator’s familiarity with LSD rules may have influenced qualitative assessments. In addition, the rules found by our algorithm depend on both input parameter settings and the rule styles supported by our algorithm. We plan to carry out further investigations to understand what kinds of systematic changes are frequent yet not captured by our current algorithm.

6. APPLICATIONS OF LOGICAL STRUCTURAL DELTA

Based on example LSDs found in our study, we believe that LSD can serve as a basis for many tools that can benefit from explicit logical structure in code change.

Dependency Creation or Removal Checker. When team leads review a patch, they often wonder whether a new dependency is unexpectedly introduced or whether existing dependencies are completely removed as intended. In our study, we have found many LSD rules that clearly show such dependency creation and removal; for example, the following two rules show that all call dependencies to NamingHelper are newly introduced and that all accesses to JNI.URL in the old version are completely removed.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Fact</th>
<th>Cvr.</th>
<th>Csc.</th>
<th>Adm.</th>
<th>Time (Mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identifying Related Changes. Programmers often need to sort out mixed logical changes because some programmers commit unrelated changes together. LSDs can help identify related changes by showing structural dependencies and further identifying their common characteristics. Consider dnsjava release 0.6-0.7; there are two added classes, Cache and CacheResponse, and three added methods in RRSets. Despite its change comment, “DNS.dns uses Cache,” it is not clear whether all added code fragments implement the cache feature. The following rule shows that the three methods are indeed a part of cache feature because Cache.addRRSet calls them.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Fact</th>
<th>Cvr.</th>
<th>Csc.</th>
<th>Adm.</th>
<th>Time (Mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Incomplete Change Detection. We believe that LSD rules can help programmers identify incomplete change by noting exceptions to systematic changes. For example, the following rule found in dnsjava 0.4-0.5 can help programmers raise a suspicion about why the three rrToWire methods did not change similarly.

7. RELATED WORK

Canonical Systematic Change. Several kinds of canonical systematic changes are well understood and studied in software engineering community, and many have built tools that automatically identify such systematic changes.

Refactorings are systematic changes that are intended to preserve program semantics [7]. There are several tools that automatically infer refactorings by comparing two program versions. Many of these tools are summarized elsewhere [17, 18]. While most tools as well as our previous work [18] focused on simple refactorings such as renaming, moving, and API signature change, LSD can help identify high-level refactorings such as extract superclass by considering structural dependencies. Using LSD for inferring refactorings has two strengths: (1) Our approach does not require pre-defined refactoring patterns, which makes refactoring inference both more flexible and easier, and (2) it is robust to the situations when refactoring is incomplete or when it is mixed with other changes.

Crosscutting concerns represent secondary design decisions—for example, performance, error handling, and synchronization—that are generally scattered throughout a program [16, 27]. Aspect-oriented programming languages provide language constructs that allow concerns to be updated in a modular fashion [15]. A number of other approaches instead leave the crosscutting concerns in a program while providing mechanisms to manage related but dispersed code fragments. Griswold’s information transparency techniques use naming conventions, formatting styles, and ordering of code in a file to provide indications about code that should change together [10]. Dagenais et al. [6] automatically infer structural patterns among the participants of the same concern and represent such concern using a rule syntax. The inferred rules were used to trace concerns over program versions. Breu et al. [3] mine aspects from version history by grouping method calls that are added together.

Code clones—code snippets that are syntactically or semantically similar—often change similarly; consistent maintenance of code clones is another kind of systematic change. Simultaneous editing [24] and linked editing [28] provide a programmer with mechanisms to characterize similar code fragments and to edit them with a single stream of editing commands. In our clone genealogy analysis [19], we built a tool that automatically identifies several types of systematic changes on clones (e.g., consistent update, inconsistent update) and studied clone evolution.

Code Change Analysis. Several approaches represent the difference between two versions as a set of atomic changes to allow for more semantic analysis on code change. Change
Distiller [8] compares two versions of abstract syntax trees to compute tree-edit operations and then maps each tree-edit to an atomic AST-level change type (e.g., parameter ordering change). Crisp [4] models code change using several different types of coarse-grained changes and their syntactic interdependencies such as def-use relationships. Robbes’ approach [26] captures AST-level changes from IDE and groups them to a higher-level change such as a refactoring recorded in IDE. None of these automatically infer systematic changes from a set of atomic changes.

Delta Representation. Representing deltas between entities—files, programs, databases, video sequences—is a long-standing and rich research area. Most of the work focuses on the time and space efficiency of these representations: Hunt et al. performed an empirical analysis of a set of algorithms for computing deltas [13]. Conradi and Westfechtel [5] surveyed delta representations pertinent to software configuration management. Horwitz used program dependence graphs to compute program deltas and classified changes as either semantic or textual [12]. SmPL is a program delta description language designed to ease API evolution [25]. Mehra et al. [22] presented a collaborative and visual approach to differencing diagrams as opposed to text. Westfechtel earlier discussed generalized support for merging arbitrary structure-oriented documents [29]. To the best of our knowledge, neither these nor other related approaches compute rule-based deltas.

Analogous to finding contextual information from FB_n and FB_m, several different enhancements to diff provide additional contextual information. The most basic enhancement is diff’s `-c` flag, which shows a fixed number of unchanged lines around each hunk of changed text. Other tools post-process diff’s output and provide side-by-side visualization of differences or markup differences to aid in understanding textual deltas.

Rule-based Change Representation. In our previous work [18], we developed a rule-based change representation that exposes a high-level semantics-preserving transformation (e.g., moving a group of related classes and renaming a set of related APIs) and built an algorithm that automatically infers high-level refactoring rules. In both efforts, we represent systematic changes using logic rules and infer such rules using machine learning techniques. LSD differs from our previous work in several ways. First, the goal of our previous work was to match code elements across program versions to enable program analysis over multiple versions, while LSD aims to explicitly represent logical structure in code change. Second, while our previous work focused on semantics-preserving changes above the level of method headers, LSD focuses on changes in structural dependencies. Finally, from a machine learning technique perspective, our previous algorithm learns rules in an open system because there is no ground truth for a code matching problem. On the other hand, our current algorithm learns rules in a closed system—the three fact-bases—by enumerating all rules within the rule search space set by the input parameters.

Mining Association Rules From Version History. Association rule learning discovers rules that relate elements that co-occur frequently within a data set [1]. This technique has been applied to version history to discover which code elements frequently change together. While previous research on co-change reports only what changed together [9, 31, 32], LSD can help answer what, how, and why questions by hinting at the common structural characteristics of co-changed code and their common transformation, e.g., all methods that access c’s fields deleted a call to m.

Logic-based Program Representations. In software engineering community, there has been a long tradition of representing a program as a logic-base (or database). JQuery [14] and CodeQuest [11] allow programmers to investigate a program’s structure by formulating a logic query in a language like Prolog. Wuyts et al.’s approach [30] uses logic rules to describe software architecture and design patterns and checks their conformance on a fact-base. Mens et al. [23] allow programmers to specify a group of related code fragments that address the same concern using logic rules (e.g., all methods that access the same variable). Our work differs from these—and the many other logic-based representations of programs—in focusing on explicitly representing the difference between two programs.

8. CONCLUSIONS AND FUTURE WORK

Our approach is the first to represent the difference between two program versions using logic rules and facts by automatically inferring rules. Each rule in a logical structural delta concisely explains a group of atomic changes that share similar structural characteristics; thus, LSD can complement textual deltas by providing structural information and explicitly presenting its systematic nature. We believe LSD can serve as a basis for many software engineering tools that focus on code change—mining aspects based on change history, automatic identification of refactorings, checking dependency removal and creation, detection of incomplete or inconsistent changes, etc.

As future work, we plan to investigate effective clustering algorithms for grouping LSD rules because often several rules together form a higher-order change pattern. Furthermore, we believe that visualization of textual deltas can be improved by filtering out or regrouping line-level differences using the structure found by LSD. To assist programmers in interpreting LSD rules, we plan to build an automatic rule translator since it is fairly mechanical to translate first order logic rules to English sentences.

Acknowledgment.

We especially thank Kris De Volder for providing JQuery and Rob DeLine for sharing motivating examples from his observational study of programmers. We thank Marius Nita, Noah Snively, Vibha Sazawal, and Alan Ho for their comments on our draft.

9. REFERENCES

