
Multi-Paxos: An Implementation and Evaluation

Hao Du∗ David J. St. Hilaire∗

Abstract
We implemented a fully functional sequential Multi-

Paxos system and a prototype parallel Multi-Paxos sys-
tem. The throughput of the system under various settings
of the Paxos cluster size, network latency, and window
size (of the parallel Paxos) were evaluated, giving us in-
sight into how and when these factors affect the perfor-
mance. Additonally, despite existing methods for elect-
ing distinguished proposer, we proposed and evaluated a
different simple yet effective approach to determine the
distinguished proposer.

1 Introduction
Paxos is a distributed system consensus algorithm that
was described in Lamport’s paper, The Part-Time Parlia-
ment. It was our goal to implement and evaluate a real
implementation of a Paxos based system because while
Paxos is a well-defined and understood algorithm, creat-
ing an implementation for the real world is not straight-
forward. Through this project, we desired to garner a
better understanding of Paxos as a whole and to under-
stand some of the issues and limitations facing real im-
plementations. In the process of implementing Paxos
based systems, we considered two open issues facing
Paxos in practice: liveness and throughput. Because of
the FLP impossibility proof [2], Paxos cannot guaran-
tee liveness and safety at the same time, so it guarantees
safety and gives suggestions on how to achieve liveness
through a distinguished proposer. We considered distin-
guished proposer implementations, developed our own,
and evaluated it to ensure that it performs adequately in
practice. The issue with throughput is that any useful
system needs to be able to efficiently implement multi-
ple iterations of Paxos to implement any kind of state.
To understand the throughput issue better, we built a full
sequential Paxos system and a prototype parallel Paxos
system.
Before continuing, it may be useful to refresh a few of

the main ideas of the Paxos algorithm to ensure consis-
tent terminology. A Paxos system is made up of a col-
lection of nodes that each has to 1 to 3 different roles.
These roles are Proposer, Acceptor, and Learner. When
attempting to make proposal, a Proposer begins in the
Prepare phase where it sends a Prepare message to the
Acceptor nodes. This message contains the Paxos itera-
tion number and the proposal number. The Acceptor can

∗Dept. of Computer Science and Engineering, Univ. of Washington.

respond with a rejection or with a Promise. A Promise
tells the Proposer that the Acceptor will not accept a Pro-
posal with a lower proposal number. A Promise also con-
tains the last proposal value that the Acceptor accepted.
If the proposer receives a Promise from a majority of the
Acceptors, it can move to the Propose phase. In this
phase, the Proposer sends a Proposal message contain-
ing the Paxos iteration number, the proposal number, and
the proposal value (this is either the value returned in the
Prepare phase or a value of the Proposer’s choosing if
no value was obtained in the Prepare phase) to the Ac-
ceptors. If the Acceptors have not promised to only ac-
cept higher proposal numbers, they can send an Accept
message to the Proposer. If the Proposer receives an Ac-
cept message from a majority of the Acceptors, it will
know that the value has been decided for that iteration of
Paxos.

2 Implementation
We designed our system with the original intent of run-
ning it on the Seattle platform. Since we were limited
on the number of machines that we could acquire, we
decided to implement each Paxos node as a combined
Proposer, Acceptor, and Learner. We also decided to use
UDP instead of TCP because originally we were not sure
how many connections we would be allowed.

2.1 How the system works a high level
In our implementation, the Paxos system is used as a stor-
age system. Clients have the ability to read the value of
a variable or to write a new value to a variable. However,
before a client can do this, it must find the distinguished
proposer. Since the client may not know which Paxos
node is the distinguished proposer, it will send a session
request to some arbitrary Paxos node that it knows. If this
Paxos node is the distinguished proposer, it will respond
with a session accept message containing a client id and
sequence number for the client. The sequence number al-
lows the distinguished proposer to differentiate between
multiple requests that appear the same and a single re-
quest that is received multiple times. If the Paxos node
is not the distinguished proposer, it will respond with a
session reject message with contains the IP address and
port of the Paxos node that it believes is the current dis-
tinguished proposer.
Once a client has successfully established a session,

it can start sending Paxos requests to the distinguished
proposer. The distinguished proposer will respond to let

1

the client know that the request has been received and is
being processed. Once the request has been successfully
completed, the client will receive a message with the re-
sponse. If a node loses distinguished proposer status, it
will notify the clients by telling that their Paxos requests
have failed. The clients can then establish a new session
with the new distinguished proposer and send it their re-
quests.

2.2 Original Multi-Paxos: Sequential

The Paxos algorithm describes how to come to a consen-
sus within a distributed system. However to be useful,
a distributed system needs to be able to implement mul-
tiple sessions of Paxos that sequentially tie together to
form the state of the system. We will follow Google’s
terminology and refer to this as Multi-Paxos [1].

Our plan to create a Multi-Paxos system was to im-
plement completely separate sequential Paxos iterations.
All Paxos nodes would defer to the distinguished pro-
poser, who would make all proposals. A distinguished
proposer would progress from one Paxos iteration to the
next Paxos iteration in sequential order. While the dis-
tinguished proposer had uncompleted client requests, it
would execute the Prepare phase on the Paxos iteration
it believed to be the next empty iteration. In the Propose
phase if less than a majority of acceptors responded in
the Prepare phase that no value has been proposed, the
distinguished proposer would propose the value given
by the acceptors. Otherwise, it would propose the next
client request in its queue as the value. Once it had
successfully obtained accept messages from a majority
of the acceptor nodes, it would act as the distinguished
learner and broadcast to all the nodes the decided value
for that iteration.

Since our Paxos system acted as the data storage sys-
tem itself, the distinguished proposerwould respondwith
the state after implementing the client requests. Since
the distinguished proposer does not need to know the de-
cided state of earlier iterations before completing later
iterations (for example if a different node was the dis-
tinguished proposer for that iteration and the current dis-
tinguished proposer had some holes in its knowledge), it
may not respond to client requests directly after complet-
ing them. Rather the distinguished proposer would learn
the decided values for the holes in its knowledge, while
processing new requests. It is safe to continue new iter-
ations while learning old ones because every iteration is
a completely separate instance of Paxos. As holes were
filled, the node would implement all decided values up
to next knowledge hole. Once the holes were filled, the
master would know the correct state for each iteration
and could send responses to the client.

2.2.1 Distinguished Proposer
Paxos as a system provides fault tolerance and safety.
However, it does not guarantee liveness because more
than one Paxos node may attempt to make a proposal at
the same time. Lamport suggested that a Paxos system
implement the idea of a distinguished proposer (or presi-
dent) to solve this issue [3]. All proposer nodes will defer
proposals to the distinguished proposer to minimize con-
tention in the Paxos system. Once a single distinguished
proposer has been selected, the system is guaranteed to
make progress. However selecting a single distinguished
proposer is an instance of the FLP problem.
In his original paper, one suggestion that Lamport

made was a fixed order for the distinguished proposer
that was based on the nodes “name” [3]. Another op-
tion is to elect the distinguished proposer via a Paxos
iteration. One issue with the first suggestion is that if
the node with the best “name has a very high latency or
fails frequently, there often be situations where there is
no consensus on who is the distinguished proposer. The
second suggestion fixes this problem because over time
a more stable node is more likely to be the distinguished
proposer. However, until nodes learn the most current
values, they will not know who the current distinguished
proposer is.
Thus we proposed a slightly different distinguished

proposer election than directly through Paxos to simplify
the logic and to speed up the consensus time. During
normal operations, the node to make the last successful
proposal is considered the distinguished proposer. In our
system, one node is both the distinguished proposer and
the distinguished learner (the distinguished learner is re-
sponsible for learning the decided values for the Paxos
iterations). As the distinguished proposer makes suc-
cessful proposals, it broadcasts the decision to all other
nodes. If a node realizes that it is missing information
about a Paxos iteration, it queries the distinguished pro-
poser for information.
When every node starts, it contains a list of all the

other nodes in the system. It considers the first node
in the list to be the distinguished proposer at this time.
Every node periodically sends a message to the node it
considers the distinguished proposer asking who it con-
siders to be the distinguished proposer. If the response is
a different node than the responding node, the questioner
updates whom it considers the distinguished proposer to
be this new node. If the distinguished proposer does not
respond for a specific period of time, it considers the dis-
tinguished proposer to be failed. At this point, it will
attempt to deal with client requests itself instead of for-
warding them to the distinguished proposer.
If multiple Paxos nodes are attempting to become the

distinguished proposer, there is a good chance that there
will be conflict before one or more nodes successfully

2

complete a proposal. Following the Paxos algorithm
guarantees that there is no danger of violating safety;
however Paxos nodes will receive reject messages be-
cause another node used a higher proposal number. Upon
receiving a reject message, the Paxos will do an ad-
ditively increasing (for each rejected attempt) random
backoff. If after the backoff time has expired it has not
learned of a new distinguished proposer, it will increase
its proposal number to be higher than the number that
caused its rejection. Since only one of the nodes attempt-
ing to be the distinguished proposer will not receive a
rejection message (because it was using the highest pro-
posal number), it should be the only one attempting to
make a proposal while the other nodes wait for their
backoff timer to expire. If this node fails or is unable to
communicate with some Paxos nodes, the random com-
ponent of the backoff should space out when the other
nodes retry, making it easier for one node to successfully
complete a proposal and inform the other nodes that it is
the distinguished proposer. It is important to increase the
backoff with each rejection to ensure that a node has time
to finish a proposal (if network latency varies or Paxos
nodes become overloaded, the time to finish a proposal
will also varies).

2.3 Multi-Paxos Take Two: Parallel

After analyzing our results for the sequential Paxos, we
noted that some of the bottleneck was the extra overhead
of implementing the storage system within the Paxos
node. We knew that real life Paxos systems such as
Google’s [1] used a parallel Paxos implementation to in-
crease the throughput. Thus we hypothesized that if we
removed the excess from the implementation so that it
did not have to perform the extra processing, then our
bottleneck would become the delay due to the round trip
time. Our desire was to see how much of a throughput
increase could be gained by using a parallel implementa-
tion with large window sizes.
We considered two different options for parallelizing

our Paxos system. The first option would require our dis-
tinguished proposer to run multiple consecutive Paxos it-
erations at once. This would require approximately the
same amount of processing per iteration but would re-
duce any down time due to the RTT.
The second option was to implement an optimization

discussed in Lamport’s paper [3]. In this type of Multi-
Paxos system, the distinguished proposer does a single
Prepare phase and then uses the same proposal number
for a series of Proposal phases. To implement this we
would need a global proposal number for every iteration.
At this point if the distinguished proposer can guaran-
tee that there are no values for a set of iterations (typi-
cally this would be all the future iterations that no one
has proposed on), it can perform the Prepare phase once

and then simultaneously perform multiple instances of
the Propose phase with the same proposal number on
these iterations. As long as another node does not at-
tempt the Prepare phase with a higher proposal num-
ber (if it is lower, the Prepare attempt will be rejected),
the distinguished proposer can continue to use the same
proposal number for any number of future proposals.
However it another node successfully completes the Pre-
pare phase with a higher proposal number, all propos-
als that the current distinguished proposer makes will
be rejected. The new distinguished proposer will need
to perform the Prepare stage on enough Paxos iterations
until it finds a consecutive set of iterations equal to the
size of the window used for the consecutive proposals
before it can perform multiple Proposal phases without
the Prepare phase. Therefore it is necessary for the dis-
tinguished proposer to use a known window size for the
multiple Proposal phase; otherwise no other node could
ever safely drop the Prepare phase.
The second option greatly decreases the number of

messages required for a successful proposal and provides
an easier way to look at the affect of the RTT on the
successful proposal. Because of these advantages and
because both implementations would require rewriting
large portions of the code to ensure correctness in the
eyes of the client, we decided the implement the second
option. We did not implement a full Paxos system for
this; rather we created a prototype based on our original
code base. Because it was not necessary for our eval-
uations and we did not have enough time, we did not
implement the required checks to deal with changing dis-
tinguished proposers described above. This allowed us to
focus on the evaluation of window sizes and latencies in-
stead. Assuming that this distinguished proposer change
never happens, our prototype correctly implements the
Paxos protocol and guarantees safety.

3 Evaluation
3.1 Correctness Test
For a Paxos system to be correct means that no mat-
ter how severe the environment becomes (node crashes,
variable network latency) there will never be conflict be-
tween nodes about learned(decided) values.
We apply run-time conflict detection and off-line

checksums of the run time logs on our implementation
of the sequential Paxos system, verifying the correctness
of our implementation. The online conflict detection is
triggered whenever a learner learns a new value on a cer-
tain iteration. On Iteration i, if a learner l learns a value
v′i which is different from the value vi the learner has al-
ready learned (if l has learned a value for Iteration i), in-
consistency happens and the learner throws an exception.
The offline checksum detector is separately run based on
the permanent logs that every learner writes to the disk.

3

It reads the learned values of all iterations up to a com-
mon maximum learned iteration number from their logs.
Then sorting and concatenating the values into a file, it
computes the checksum of the file. The checksum is re-
quired to be identical among nodes.
We ran our Paxos system, randomly killing and start-

ing nodes. It was observed that the nodes dynamically
updated their states and filled the holes in their knowl-
edge by requesting state updates from the distinguished
proposer or “prepare” to learn the values if they were
the distinguished proposer. Our system implementation
is correct since we observe that (1) run-time assertions
never occur; (2) the off-line checksum remain consistent.

3.2 Sequential Paxos

We evalutated the throughput versus the number of Paxos
nodes using our implementation of the sequential Paxos
system. Throughput is defined as number of Paxos re-
quests the system can finish during a unit time period
(one second). The experiment was run over the lab’s high
quality LAN.
Given N (from 1 to 10) nodes in the Paxos system,

two clients simultaneously send 100 requests to the sys-
tem, waiting until all responses are received. The to-
tal run time is the maximum run time of both clients.
The following shows an instance of the data in the for-
mat (#nodes,totaltime(seconds)). (1, 13.2), (2, 22.1),
(3, 29.8), (4, 38.2), (5, 46.2), (6, 54.3), (7, 62.6),
(8, 71.2), (9, 79.3), (10, 87.5). It was observed that
the total time needed to finish 200 requests increased lin-
early with the number of nodes.
We ran each case five times to obtain the mean and

standard deviation. Figure 1 shows the throughput verses
number of nodes (the green stars annotates the corre-
sponding standard deviation). The throughput decreases
roughly according to a 1

x curve as the number of nodes
increases.
The number of Paxos messages that the distinguished

proposer needs to pass and process increases linearly
with the existing of number of nodes, which explains
that the time-cost increases linearly and the throughput
decreases according to 1

x .

3.2.1 Distinguished Proposer

While we knew that our algorithm for distinguished pro-
poser works in theory, we wanted to ensure that it con-
verges quickly in practice. To help with this evalua-
tion, we implemented our Paxos nodes to wait to attempt
becoming distinguished proposer when the old distin-
guished proposer stops responding until they receive a
client session request. To test how long the conflict oc-
curs on average, we calculated the time that it took our
Paxos system with 10 nodes and 1 node (other than the
distinguished proposer) failed to successfully return 10

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Number of Nodes

Th
ro

ug
hp

ut

Figure 1: Scalability of our system. The overall time
needed to finish a certain amount of requests (200) in-
crease linearly with the increment of number of Paxos
nodes, such that our throughput decrease according to a
1
x curve.

requests each to 10 clients. Each client was programmed
to use a different Paxos node as its access point to the
cluster. We then ran a number of tests with all nodes
running but the distinguished proposer. After waiting
to ensure that all nodes knew that the distinguished pro-
poser was not responding, we simultaneously started the
10 clients. Since every client contacted a different node
for a session, each node in the cluster attempts to make a
proposal and become the distinguished proposer.
Until a node believes that another node has become the

distinguished proposer, it will continue to keep its ses-
sion with its client and continue proposing (backing off
if rejected). Once it learns that there is a distinguished
proposer, it will redirect its client to the distinguished
proposer. Thus every node must either learn who the dis-
tinguished proposer is or become the distinguished pro-
poser itself for the client to successfully complete 10 re-
quests. Thus the difference between this time and the
control time is the time it takes for all Paxos nodes to
converge to the knowledge of the distinguished proposer.
It is okay if a node temporarily believes that an old dis-
tinguished proposer is the current distinguished proposer
because all nodes periodically send messages to their be-
lieved distinguished proposer to see if it is up. If the node
is up, it will send the information on who it believes to
be distinguished proposer (which could be itself).
In Figure 2, we see a distribution of the additional time

required to fulfill the 100 requests. With high probabil-
ity, the system had a stable distinguished proposer within
a short time (less than 2 seconds). On occassion, the con-
vergence time required a full 10 seconds, which we be-
lieve to be well within a reasonable time.

4

0 5 10 15
0

5

10

15

20

25

30

Time needed to solve the contention

Nu
m

be
r o

f r
un

s

Figure 2: The histogram shows the performance of our
leader election strategy. For the 63 runs of contention
among 9 Paxos nodes (where the distinguished proposer
died), all the contentions were solved within 11 seconds.
A large number of them were solved within 2 seconds.

3.3 Network Latency Matters
The system throughput is related to network latency of
the participating nodes. However, due to the nature of
the Paxos system, a simple observation is that if a ma-
jority of the nodes had a low latency connection to the
leader, a minority of high latency nodes will not alter the
throughput. Our theory is that if the bottle neck of the
performance of a Paxos system stems from network la-
tency (though we will show in the next section that by
appropriately setting the window size in a Parallel Paxos
system, the network latency’s effect on the performance
will be lessened), the throughput is determined by the la-
tency of the node whose latency is after the node with
median latency (when sorting latency in ascending or-
der). In more formal terms, assumeN nodes. Let li be the
network latency of Node i, and {mi} be sorted network
latency in ascending order of {∀i : li}, the throughput T
would be,

T = f (mf loor(N/2)+1) (1)

We observed this pattern by simulating additional net-
work latency in the LAN. For the test, 10 Paxos nodes
were set up. Excluding the distinguished proposer, we
divided the remaining 9 nodes into two groups, high la-
tency and low latency. The nodes in the low latency
group possessed an additional 50ms network delay, while
the nodes in the high latency group possessed an addi-
tional 500ms network delay. The client sent 100 requests
to the distinguished proposer. Figure 3 shows the time
required to complete the 100 requests versus the number
of high latency nodes. The graph supports our theory.
It may be noted that time required slightly increased

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

Number of High Latency Nodes

Ti
m

e
ne

ed
ed

 fo
r f

in
ish

in
g

al
l t

he
 re

qu
es

ts

Figure 3: Run time versus the number of high latency
nodes. In a 10 node Paxos system, if a majority (greater
or equal to 6) nodes are of a low network delay (50ms) to
the distinguished proposer, the run time is low, while the
run time dramatically increases as soon as a high latency
node becomes part of the majority.

at 4 high latency nodes. We observed that this occurs be-
cause in our implementation the distinguished proposer
also sends every message to itself. Since it is also pro-
cessing messages from the client, its reponse time is
slower than the other 5 low latency nodes, since they
are usually idle. Therefore the distinguished proposer’s
response time is the deciding factor because it is the
node above the median latency node, which also supports
our theory in the general sense (not just network latency
makes this effect).

3.4 Multi-Paxos: Parallel
We originally implemented our parallel Multi-Paxos
with the thought that we would see large gains with
larger windows. However we were instantly thwarted
and found that for all window sizes we achieved simi-
lar results. No amount of tweaking our prototype deliv-
ered better results. After digging through the logs, we
were surprised to find that the larger window sizes were
not achieving better results because, at normal network
latency, the distinguished proposer was receiving mes-
sages as fast as it could process and respond to them even
with a window size of 1. Thus we decided it would be
important to see how much latency was required for the
different window sizes. After introducing latency into
our network, we observed the following results.
Figure 4 shows the relationships of various window

sizes and the overall throughput given different network
latency. At normal network latency (0 additional simu-
lated latency), all window sizes perform similarly. As the
latency increase, the window size becomes more impor-

5

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55
Additional Simulated Latency = 0 ms

Time

Nu
m

be
r o

f F
in

ish
ed

 R
eq

ue
st

s
Window Size

1
2
3
5
8
10

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55
Additional Simulated Latency = 50 ms

Time

Nu
m

be
r o

f F
in

ish
ed

 R
eq

ue
st

s

Window Size

1
2
3
5
8
10

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55
Additional Simulated Latency = 100 ms

Time

Nu
m

be
r o

f F
in

ish
ed

 R
eq

ue
st

s

Window Size

1
2
3
5
8
10

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55
Additional Simulated Latency = 300 ms

Time

Nu
m

be
r o

f F
in

ish
ed

 R
eq

ue
st

s

Window Size

1
2
3
5
8
10

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55
Additional Simulated Latency = 500 ms

Time

Nu
m

be
r o

f F
in

ish
ed

 R
eq

ue
st

s

Window Size

1
2
3
5
8
10

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55
Additional Simulated Latency = 1000 ms

Time

Nu
m

be
r o

f F
in

ish
ed

 R
eq

ue
st

s

Window Size

1
2
3
5
8
10

Figure 5: Detailed profiles illustrating the relationship among window sizes and network latency. In a network with
higher latency, parallel Paxos, by increasing its window size, is able to retain the throughput performance obtained in
a low latency network. Once the idle time period caused by the network latency is saturated, increasing the window
size further will not result in any more performance gains.

1 2 3 5 8 10
0

50

100

150

200

250

Window Size

Ti
m

e
fo

r f
in

ish
in

g
10

0
re

qu
es

ts

Additional Network Latency (m)

0
50
100
300
500
1000

Figure 4: The effects of various window sizes to the
throughput given different additional simulated network
latencies. When the network latency is small compared
to the time needed for processing a Paxos messages, win-
dow size does not really matter and parallel Paxos per-
forms similar as sequential Paxos. When the network
latency is large, sequential Paxos (or parallel Paxos with
small window sizes) will be idle waiting for responses,
while parallel Paxos with larger window sizes will con-
tinue to make progress.

tant. Of interesting note is the fact that the window size
of 10 does not becomemore effective until there is an en-
tire additional second of network latency beyond normal
latency.
Figure 5 displays the number of successful requests

over time under different variations of window sizes and
additional simluated latencies. It can be observed that,
when the network latency is large and the window size
is small, there are significant amounts of time in which
the distinguished proposer (as well as other nodes) are
idle. Increasing the window size helps to fill the idle time
and improves the overall throughput. On the other hand,
given a defined average network latency, increasing the
window size to extremely large does not make sense, be-
cause each node (especially the distinguished proposer)
needs time to process the Paxos messages. Larger win-
dow size than the system can tolerate will lead to ful-
filling the message buffer queue very quickly and could
result in lost messages. Additionally, the large the win-
dow size, the longer the search the distinguished pro-
poser must make before it can drop the Prepare phase
and only implement the Propose phase.

4 Conclusion and Future Work
We implemented a sequential Paxos system and demon-
strated that its througput decreases according to a 1x func-

6

tion as the number of nodes increases (scalability). We
verified that, if the bottle neck is due to network la-
tency, the overall performance is limited by the slowest
node in the fastest majority. We proposed and imple-
mented a method for the electing distinguished proposer
and demonstrated that with high probablity it will con-
verge in a short time. Further, we partially implemented
a parallel paxos system and tested its throughput versus
various window sizes and network latency, showing that
a larger window size does help to maintain throughput
on higher latency networks.
In the version we implemented for the evaluation pur-

poses for this paper, all the paxos requests are reads and
writes to small sized varibles in a replicated storage sys-
tem. Since paxos requests are costly, which normally
requiresO(n) (n is the number of nodes) messages being
sent and receive, it makes sense to combine unrelated re-
quests from different clients and make them into a one
big request. In that case, the packet size would become
more important, and it would be interesting to take into
consideration not only network latency but also network
bandwidth. Also we would like to see all these evalua-
tions in a WAN setting, where there is more variation in
routing and packet loss.

References
[1] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live:

an engineering perspective. In Proceedings of the 26th annual
ACM symposium on Principles of distributed computing, pages
398–407, 2007.

[2] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, 1985.

[3] L. Lamport. The part-time parliament. In ACM Transactions
on Computer Systems (TOCS), volume 16, pages 133–169. ACM,
1998.

7

