Undergraduate Courses

CSE 352: Hardware Design And Implementation Covers digital circuit design, processor design, and systems integration and embedded-systems issues. Include substantial hardware laboratory. Prerequisite: CSE 311; CSE 351.

Professional (Evening) Courses

CSEP 548: Computer Architecture Architecture of the single-chip microprocessor: instruction set design and processor implementation (pipelining, multiple issue, speculative execution). Memory hierarchy: on-chip and off-chip caches, TLBs and their management, virtual memory from the hardware viewpoint. I/O devices and control: buses, disks, and RAIDs. Prerequisite: CSE majors only.

Graduate Courses

CSE 548: Computer Systems Architecture Notations for computer systems. Processor design (single chip, look-ahead, pipelined, data flow). Memory hierarchy organization and management (virtual memory and caches). Microprogramming. I/O processing. Multiprocessors (SIMD and MIMD). Prerequisite: CSE major and CSE 451.
CSE 549: High-performance Computer Architectures Algorithm design, software techniques, computer organizations for high-performance computing systems. Selected topics from: VLSI complexity for parallel algorithms, compiling techniques for parallel and vector machines, large MIMD machines, interconnection networks, reconfigurable systems, memory hierarchies in multiprocessors, algorithmically specialized processors, data flow architectures. Prerequisite: CSE major and CSE 548 or permission of instructor.
CSE 567: Principles Of Digital Systems Design Principles of logic design, combinational and sequential circuits, minimization techniques, structured design methods, CMOS technology, complementary and ratioed gates, delay estimation and performance analysis, arithmetic circuits, memories, clocking methodologies, synthesis and simulation tools, VLSI processor architecture. Prerequisite: CSE major and basic knowledge of logic design.
CSE 568: Introduction To Vlsi Systems Introduction to CMOS technology and circuit design; combinational logic-design alternatives; register-design and system-clocking methodologies; datapath and subsystem design; VLSI system-design methodologies; CAD tools for synthesis, layout, simulation, and validation; design of a complex VLSI chip. Prerequisite: CSE 567 or permission of instructor. CSE majors only.