This project presents 802.11n+, the first fully distributed random access protocol that allows nodes to contend not just for time, but also the concurrent transmissions supported by multiple antennae. In n+, even when the medium is occupied, nodes with more antennae can transmit concurrently without harming ongoing transmissions. Furthermore, such nodes can contend for the medium in a fully distributed way. Our testbed evaluation shows that even for a small network with three competing node pairs, the resulting system about doubles the average network throughput. It also maintains the random access nature of today’s 802.11n networks.